四川省成都市金牛區(qū)2025屆高一數(shù)學第二學期期末調(diào)研試題含解析_第1頁
四川省成都市金牛區(qū)2025屆高一數(shù)學第二學期期末調(diào)研試題含解析_第2頁
四川省成都市金牛區(qū)2025屆高一數(shù)學第二學期期末調(diào)研試題含解析_第3頁
四川省成都市金牛區(qū)2025屆高一數(shù)學第二學期期末調(diào)研試題含解析_第4頁
四川省成都市金牛區(qū)2025屆高一數(shù)學第二學期期末調(diào)研試題含解析_第5頁
已閱讀5頁,還剩10頁未讀, 繼續(xù)免費閱讀

付費下載

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

四川省成都市金牛區(qū)2025屆高一數(shù)學第二學期期末調(diào)研試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.將函數(shù)的圖像左移個單位,則所得到的圖象的解析式為A. B.C. D.2.設x、y滿足約束條件,則z=2x﹣y的最大值為()A.0 B.0.5 C.1 D.23.若圓與圓相切,則實數(shù)()A.9 B.-11 C.-11或-9 D.9或-114.若點共線,則的值為()A. B. C. D.5.方程表示的曲線是()A.一個圓 B.兩個圓 C.半個圓 D.兩個半圓6.在中,,,,則的面積是()A. B. C.或 D.或7.己知弧長的弧所對的圓心角為弧度,則這條弧所在的圓的半徑為()A. B. C. D.8.已知平面平面,,點,,直線,直線,直線,,則下列四種位置關系中,不一定成立的是()A. B. C. D.9.已知正方體的個頂點中,有個為一側面是等邊三角形的正三棱錐的頂點,則這個正三棱錐與正方體的全面積之比為()A. B. C. D.10.在正三棱錐中,,則側棱與底面所成角的正弦值為()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知,向量的夾角為,則的最大值為_____.12.已知函數(shù)在時取得最小值,則________.13.已知呈線性相關的變量,之間的關系如下表所示:由表中數(shù)據(jù),得到線性回歸方程,由此估計當為時,的值為______.14.若是函數(shù)的兩個不同的零點,且這三個數(shù)可適當排序后成等差數(shù)列,也可適當排序后成等比數(shù)列,則的值等于________.15.在中,是斜邊的中點,,,平面,且,則_____.16.已知一組樣本數(shù)據(jù),且,平均數(shù),則該組數(shù)據(jù)的標準差為__________.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.在中,內(nèi)角所對的邊分別是.已知,,且.(Ⅰ)求角的大??;(Ⅱ)若,求面積的最大值.18.記數(shù)列的前項和為,已知點在函數(shù)的圖像上.(Ⅰ)求數(shù)列的通項公式;(Ⅱ)設,求數(shù)列的前項和.19.在中,,.(1)求角B的大??;(2)的面積,求的邊BC的長.20.在中,分別為角所對應的邊,已知,,求的長度.21.如圖,在四棱錐中,丄平面,,,,,.(1)證明丄;(2)求二面角的正弦值;(3)設為棱上的點,滿足異面直線與所成的角為,求的長.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解析】

由三角函數(shù)的圖象變換,將函數(shù)的圖像左移個單位,得到,即可得到函數(shù)的解析式.【詳解】由題意,將函數(shù)的圖像左移個單位,可得的圖象,所以得到的函數(shù)的解析式為,故選C.【點睛】本題主要考查了三角函數(shù)的圖象變換,其中熟記三角函數(shù)的圖象變換的規(guī)則是解答本題的關鍵,著重考查了分析問題和解答問題的能力,屬于基礎題.2、C【解析】

由約束條件作出可行域,化目標函數(shù)為直線方程的斜截式,數(shù)形結合得到最優(yōu)解,把最優(yōu)解的坐標代入目標函數(shù)得答案.【詳解】由約束條件作出可行域如圖,聯(lián)立,解得A(2,3),化目標函數(shù)z=2x﹣y為y=2x﹣z,由圖可知,當直線y=2x﹣z過A時,直線在y軸上的截距最小,z有最大值為2×2﹣3=1.故選:C.【點評】本題考查簡單的線性規(guī)劃,考查數(shù)形結合的解題思想方法,是中檔題.3、D【解析】

分別討論兩圓內(nèi)切或外切,圓心距和半徑之間的關系即可得出結果.【詳解】圓的圓心坐標為,半徑;圓的圓心坐標為,半徑,討論:當圓與圓外切時,,所以;當圓與圓內(nèi)切時,,所以,綜上,或.【點睛】本題主要考查圓與圓位置關系,由兩圓相切求參數(shù)的值,屬于基礎題型.4、A【解析】

通過三點共線轉(zhuǎn)化為向量共線,即可得到答案.【詳解】由題意,可知,又,點共線,則,即,所以,故選A.【點睛】本題主要考查三點共線的條件,難度較小.5、D【解析】原方程即即或故原方程表示兩個半圓.6、C【解析】

先根據(jù)正弦定理求出角,從而求出角,再根據(jù)三角形的面積公式進行求解即可.【詳解】解:由,,,根據(jù)正弦定理得:,為三角形的內(nèi)角,或,或在中,由,,或則面積或.故選C.【點睛】本題主要考查了正弦定理,三角形的面積公式以及特殊角的三角函數(shù)值,熟練掌握定理及公式是解本題的關鍵,屬于中檔題.7、D【解析】

利用弧長公式列出方程直接求解,即可得到答案.【詳解】由題意,弧長的弧所對的圓心角為2弧度,則,解得,故選D.【點睛】本題主要考查了圓的半徑的求法,考查弧長公式等基礎知識,考查了推理能力與計算能力,是基礎題.8、D【解析】

平面外的一條直線平行平面內(nèi)的一條直線則這條直線平行平面,若兩平面垂直則一個平面內(nèi)垂直于交線的直線垂直另一個平面,主要依據(jù)這兩個定理進行判斷即可得到答案.【詳解】如圖所示:由于,,,所以,又因為,所以,故A正確,由于,,所以,故B正確,由于,,在外,所以,故C正確;對于D,雖然,當不一定在平面內(nèi),故它可以與平面相交、平行,不一定垂直,所以D不正確;故答案選D【點睛】本題考查線面平行、線面垂直、面面垂直的判斷以及性質(zhì)應用,要求熟練掌握定理是解題的關鍵.9、A【解析】所求的全面積之比為:,故選A.10、B【解析】

利用正三棱錐的性質(zhì),作出側棱與底面所成角,利用直角三角形進行計算.【詳解】連接P與底面正△ABC的中心O,因為是正三棱錐,所以面,所以為側棱與底面所成角,因為,所以,所以,故選B.【點睛】本題考查線面角的計算,考查空間想象能力、邏輯推理能力及計算求解能力,屬于中檔題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】

將兩邊平方,化簡后利用基本不等式求得的最大值.【詳解】將兩邊平方并化簡得,由基本不等式得,故,即,即,所以的最大值為.【點睛】本小題主要考查平面向量模的運算,考查利用基本不等式求最值,考查化歸與轉(zhuǎn)化的數(shù)學思想方法,屬于中檔題.12、【解析】試題分析:因為,所以,當且僅當即,由題意,解得考點:基本不等式13、【解析】由表格得,又線性回歸直線過點,則,即,令,得.點睛:本題考查線性回歸方程的求法和應用;求線性回歸方程是??嫉幕A題型,其主要考查線性回歸方程一定經(jīng)過樣本點的中心,一定要注意這一點,如本題中利用線性回歸直線過中心點求出的值.14、1【解析】

由一元二次方程根與系數(shù)的關系得到a+b=p,ab=q,再由a,b,﹣2這三個數(shù)可適當排序后成等差數(shù)列,也可適當排序后成等比數(shù)列列關于a,b的方程組,求得a,b后得答案.【詳解】由題意可得:a+b=p,ab=q,∵p>0,q>0,可得a>0,b>0,又a,b,﹣2這三個數(shù)可適當排序后成等差數(shù)列,也可適當排序后成等比數(shù)列,可得①或②.解①得:;解②得:.∴p=a+b=5,q=1×4=4,則p+q=1.故答案為1.點評:本題考查了一元二次方程根與系數(shù)的關系,考查了等差數(shù)列和等比數(shù)列的性質(zhì),是基礎題.【思路點睛】解本題首先要能根據(jù)韋達定理判斷出a,b均為正值,當他們與-2成等差數(shù)列時,共有6種可能,當-2為等差中項時,因為,所以不可取,則-2只能作為首項或者末項,這兩種數(shù)列的公差互為相反數(shù);又a,b與-2可排序成等比數(shù)列,由等比中項公式可知-2必為等比中項,兩數(shù)列搞清楚以后,便可列方程組求解p,q.15、【解析】

由EC垂直Rt△ABC的兩條直角邊,可知EC⊥面ABC,再根據(jù)D是斜邊AB的中點,AC=6,BC=8,可求得CD的長,根據(jù)勾股定理可求得DE的長.【詳解】如圖,EC⊥面ABC,而CD?面ABC,∴EC⊥CD,∵AC=6,BC=8,EC=12,△ABC是直角三角形,D是斜邊AB的中點,∴CD=5,ED1.故答案為1.【點睛】本題主要考查了線面垂直的判定和性質(zhì)定理,利用勾股定理求線段的長度,考查了空間想象能力和推理論證能力,屬于基礎題.16、11【解析】

根據(jù)題意,利用方差公式計算可得數(shù)據(jù)的方差,進而利用標準差公式可得答案.【詳解】根據(jù)題意,一組樣本數(shù)據(jù),且,平均數(shù),則其方差,則其標準差,故答案為:11.【點睛】本題主要考查平均數(shù)、方差與標準差,屬于基礎題.樣本方差,標準差.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(Ⅰ)(Ⅱ)【解析】

(Ⅰ)先利用向量垂直的坐標表示,得到,再利用正弦定理以及兩角和的正弦公式將,化為,進而得到,由此能求出.(Ⅱ)將兩邊平方,推導出,當且僅當,時取等號,由此求出面積的最大值.【詳解】解析:(Ⅰ)由得,則得,即由于,得,又A為內(nèi)角,因此.(Ⅱ)將兩邊平方,即所以,當且僅當,時取等號.此時,其最大值為.【點睛】本題主要考查數(shù)量積的坐標表示及運算、兩角和的正弦公式應用、三角形面積公式的應用以及利用基本不等式求最值.18、(Ⅰ);(Ⅱ).【解析】

(1)本題首先可根據(jù)點在函數(shù)的圖像上得出,然后根據(jù)與的關系即可求得數(shù)列的通項公式;(2)首先可根據(jù)數(shù)列的通項公式得出,然后根據(jù)裂項相消法求和即可得出結果?!驹斀狻?1)由題意知.當時,;當時,,適合上式.所以.(2).則?!军c睛】本題考查根據(jù)數(shù)列的前項和為求數(shù)列的通項公式,考查裂項相消法求和,與滿足以及,考查計算能力,是中檔題。19、(1);(2)【解析】

(1)由條件可,展開計算代入,即可得;(2)先利用正弦定理求出,再利用面積可得,解方程可得,再利用余弦定理可求得邊BC的長.【詳解】解:(1)在中,,則,即,整理得,又,,(2)由正弦定理得,又,即,所以,,解得,即.【點睛】本題考查了正弦定理,余弦定理的應用,考查了面積公式,是基礎題.20、或【解析】

由已知利用三角形的面積公式可得,可得或,然后分類討論利用余弦定理可求的值.【詳解】由題意得,即,或,又,當時,,可得,當時,,可得,故答案:或.【點睛】本題主要考查了三角形面積公式,余弦定理等知識解三角形,屬于基礎題.21、(1)見證明;(2);(3)【解析】

(1)要證異面直線垂直,即證線面垂直,本題需證平面(2)作于點,連接.為二面角的平面角,在中解出即可.(3)過點作的平行線與線段相交,交點為,連接,;計算出AF、BF,再在中利用的余弦公式,解出EF,即可求出AE的長【詳解】(1)證明:

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論