陜西省寶雞市岐山縣重點(diǎn)名校2024屆中考三模數(shù)學(xué)試題含解析_第1頁(yè)
陜西省寶雞市岐山縣重點(diǎn)名校2024屆中考三模數(shù)學(xué)試題含解析_第2頁(yè)
陜西省寶雞市岐山縣重點(diǎn)名校2024屆中考三模數(shù)學(xué)試題含解析_第3頁(yè)
陜西省寶雞市岐山縣重點(diǎn)名校2024屆中考三模數(shù)學(xué)試題含解析_第4頁(yè)
陜西省寶雞市岐山縣重點(diǎn)名校2024屆中考三模數(shù)學(xué)試題含解析_第5頁(yè)
已閱讀5頁(yè),還剩20頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

陜西省寶雞市岐山縣重點(diǎn)名校2024屆中考三模數(shù)學(xué)試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請(qǐng)用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號(hào)。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無(wú)效。一、選擇題(每小題只有一個(gè)正確答案,每小題3分,滿分30分)1.如圖,將矩形ABCD沿對(duì)角線BD折疊,使C落在C'處,BC'交AD于E,則下列結(jié)論不一定成立的是()A.AD=BC' B.∠EBD=∠EDBC.ΔABE~ΔCBD D.sin2.下列式子成立的有()個(gè)①﹣的倒數(shù)是﹣2②(﹣2a2)3=﹣8a5③()=﹣2④方程x2﹣3x+1=0有兩個(gè)不等的實(shí)數(shù)根A.1 B.2 C.3 D.43.如圖,有一塊含有30°角的直角三角板的兩個(gè)頂點(diǎn)放在直尺的對(duì)邊上.如果∠2=44°,那么∠1的度數(shù)是()A.14°B.15°C.16°D.17°4.下列圖形中,既是中心對(duì)稱圖形又是軸對(duì)稱圖形的是()A. B.C. D.5.如圖所示,在平面直角坐標(biāo)系中A(0,0),B(2,0),△AP1B是等腰直角三角形,且∠P1=90°,把△AP1B繞點(diǎn)B順時(shí)針旋轉(zhuǎn)180°,得到△BP2C;把△BP2C繞點(diǎn)C順時(shí)針旋轉(zhuǎn)180°,得到△CP3D,依此類推,則旋轉(zhuǎn)第2017次后,得到的等腰直角三角形的直角頂點(diǎn)P2018的坐標(biāo)為()A.(4030,1) B.(4029,﹣1)C.(4033,1) D.(4035,﹣1)6.下列實(shí)數(shù)中,無(wú)理數(shù)是()A.3.14 B.1.01001 C. D.7.許昌市2017年國(guó)內(nèi)生產(chǎn)總值完成1915.5億元,同比增長(zhǎng)9.3%,增速居全省第一位,用科學(xué)記數(shù)法表示1915.5億應(yīng)為()A.1915.15×108 B.19.155×1010C.1.9155×1011 D.1.9155×10128.如圖,矩形ABCD的邊長(zhǎng)AD=3,AB=2,E為AB的中點(diǎn),F(xiàn)在邊BC上,且BF=2FC,AF分別與DE、DB相交于點(diǎn)M,N,則MN的長(zhǎng)為()A. B. C. D.9.如圖,在?ABCD中,∠DAB的平分線交CD于點(diǎn)E,交BC的延長(zhǎng)線于點(diǎn)G,∠ABC的平分線交CD于點(diǎn)F,交AD的延長(zhǎng)線于點(diǎn)H,AG與BH交于點(diǎn)O,連接BE,下列結(jié)論錯(cuò)誤的是()A.BO=OHB.DF=CEC.DH=CGD.AB=AE10.下列圖形中,不是軸對(duì)稱圖形的是()A. B. C. D.二、填空題(共7小題,每小題3分,滿分21分)11.如圖,在正方形網(wǎng)格中,線段A′B′可以看作是線段AB經(jīng)過(guò)若干次圖形的變化(平移、旋轉(zhuǎn)、軸對(duì)稱)得到的,寫出一種由線段AB得到線段A′B′的過(guò)程______12.已知x、y是實(shí)數(shù)且滿足x2+xy+y2﹣2=0,設(shè)M=x2﹣xy+y2,則M的取值范圍是_____.13.如果a+b=2,那么代數(shù)式(a﹣)÷的值是______.14.小剛家、公交車站、學(xué)校在一條筆直的公路旁(小剛家、學(xué)校到這條公路的距離忽略不計(jì)).一天,小剛從家出發(fā)去上學(xué),沿這條公路步行到公交站恰好乘上一輛公交車,公交車沿這條公路勻速行駛,小剛下車時(shí)發(fā)現(xiàn)還有4分鐘上課,于是他沿著這條公路跑步趕到學(xué)校(上、下車時(shí)間忽略不計(jì)),小剛與學(xué)校的距離s(單位:米)與他所用的時(shí)間t(單位:分鐘)之間的函數(shù)關(guān)系如圖所示.已知小剛從家出發(fā)7分鐘時(shí)與家的距離是1200米,從上公交車到他到達(dá)學(xué)校共用10分鐘.下列說(shuō)法:①公交車的速度為400米/分鐘;②小剛從家出發(fā)5分鐘時(shí)乘上公交車;③小剛下公交車后跑向?qū)W校的速度是100米/分鐘;④小剛上課遲到了1分鐘.其中正確的序號(hào)是_____.15.如圖,在矩形ABCD中,DE⊥AC,垂足為E,且tan∠ADE=,AC=5,則AB的長(zhǎng)____.16.不等式組的解集是__________.17.已知代數(shù)式2x﹣y的值是,則代數(shù)式﹣6x+3y﹣1的值是_____.三、解答題(共7小題,滿分69分)18.(10分)已知:如圖1,拋物線的頂點(diǎn)為M,平行于x軸的直線與該拋物線交于點(diǎn)A,B(點(diǎn)A在點(diǎn)B左側(cè)),根據(jù)對(duì)稱性△AMB恒為等腰三角形,我們規(guī)定:當(dāng)△AMB為直角三角形時(shí),就稱△AMB為該拋物線的“完美三角形”.(1)①如圖2,求出拋物線的“完美三角形”斜邊AB的長(zhǎng);②拋物線與的“完美三角形”的斜邊長(zhǎng)的數(shù)量關(guān)系是;(2)若拋物線的“完美三角形”的斜邊長(zhǎng)為4,求a的值;(3)若拋物線的“完美三角形”斜邊長(zhǎng)為n,且的最大值為-1,求m,n的值.19.(5分)如圖,C是⊙O上一點(diǎn),點(diǎn)P在直徑AB的延長(zhǎng)線上,⊙O的半徑為3,PB=2,PC=1.(1)求證:PC是⊙O的切線.(2)求tan∠CAB的值.20.(8分)如圖,拋物線與x軸交于A,B,與y軸交于點(diǎn)C(0,2),直線經(jīng)過(guò)點(diǎn)A,C.(1)求拋物線的解析式;(2)點(diǎn)P為直線AC上方拋物線上一動(dòng)點(diǎn);①連接PO,交AC于點(diǎn)E,求的最大值;②過(guò)點(diǎn)P作PF⊥AC,垂足為點(diǎn)F,連接PC,是否存在點(diǎn)P,使△PFC中的一個(gè)角等于∠CAB的2倍?若存在,請(qǐng)直接寫出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.21.(10分)如圖,矩形ABCD的對(duì)角線AC、BD交于點(diǎn)O,且DE∥AC,CE∥BD.(1)求證:四邊形OCED是菱形;(2)若∠BAC=30°,AC=4,求菱形OCED的面積.22.(10分)一個(gè)不透明的口袋里裝有分別標(biāo)有漢字“美”、“麗”、“光”、“明”的四個(gè)小球,除漢字不同之外,小球沒(méi)有任何區(qū)別,每次摸球前先攪拌均勻再摸球.若從中任取一個(gè)球,求摸出球上的漢字剛好是“美”的概率;甲從中任取一球,不放回,再?gòu)闹腥稳∫磺?,?qǐng)用樹(shù)狀圖或列表法,求甲取出的兩個(gè)球上的漢字恰能組成“美麗”或“光明”的概率.23.(12分)如圖,∠AOB=90°,反比例函數(shù)y=﹣(x<0)的圖象過(guò)點(diǎn)A(﹣1,a),反比例函數(shù)y=(k>0,x>0)的圖象過(guò)點(diǎn)B,且AB∥x軸.(1)求a和k的值;(2)過(guò)點(diǎn)B作MN∥OA,交x軸于點(diǎn)M,交y軸于點(diǎn)N,交雙曲線y=于另一點(diǎn)C,求△OBC的面積.24.(14分)如圖,AB是⊙O的直徑,弦DE交AB于點(diǎn)F,⊙O的切線BC與AD的延長(zhǎng)線交于點(diǎn)C,連接AE.(1)試判斷∠AED與∠C的數(shù)量關(guān)系,并說(shuō)明理由;(2)若AD=3,∠C=60°,點(diǎn)E是半圓AB的中點(diǎn),則線段AE的長(zhǎng)為.

參考答案一、選擇題(每小題只有一個(gè)正確答案,每小題3分,滿分30分)1、C【解析】分析:主要根據(jù)折疊前后角和邊相等對(duì)各選項(xiàng)進(jìn)行判斷,即可選出正確答案.詳解:A、BC=BC′,AD=BC,∴AD=BC′,所以A正確.B、∠CBD=∠EDB,∠CBD=∠EBD,∴∠EBD=∠EDB,所以B正確.D、∵sin∠ABE=AEBE∵∠EBD=∠EDB∴BE=DE∴sin∠ABE=AEED由已知不能得到△ABE∽△CBD.故選C.點(diǎn)睛:本題可以采用排除法,證明A,B,D都正確,所以不正確的就是C,排除法也是數(shù)學(xué)中一種常用的解題方法.2、B【解析】

根據(jù)倒數(shù)的定義,冪的乘方、二次根式的混合運(yùn)算法則以及根的判別式進(jìn)行判斷.【詳解】解:①﹣的倒數(shù)是﹣2,故正確;②(﹣2a2)3=﹣8a6,故錯(cuò)誤;③(-)=﹣2,故錯(cuò)誤;④因?yàn)椤鳎?﹣3)2﹣4×1×1=5>0,所以方程x2﹣3x+1=0有兩個(gè)不等的實(shí)數(shù)根,故正確.故選B.【點(diǎn)睛】考查了倒數(shù)的定義,冪的乘方、二次根式的混合運(yùn)算法則以及根的判別式,屬于比較基礎(chǔ)的題目,熟記計(jì)算法則即可解答.3、C【解析】

依據(jù)∠ABC=60°,∠2=44°,即可得到∠EBC=16°,再根據(jù)BE∥CD,即可得出∠1=∠EBC=16°.【詳解】如圖,∵∠ABC=60°,∠2=44°,∴∠EBC=16°,∵BE∥CD,∴∠1=∠EBC=16°,故選:C.【點(diǎn)睛】本題主要考查了平行線的性質(zhì),解題時(shí)注意:兩直線平行,內(nèi)錯(cuò)角相等.4、D【解析】

根據(jù)中心對(duì)稱圖形的定義旋轉(zhuǎn)180°后能夠與原圖形完全重合即是中心對(duì)稱圖形,以及軸對(duì)稱圖形的定義即可判斷出.【詳解】解:A.∵此圖形旋轉(zhuǎn)180°后不能與原圖形重合,∴此圖形不是中心對(duì)稱圖形,是軸對(duì)稱圖形,故此選項(xiàng)錯(cuò)誤;B.∵此圖形旋轉(zhuǎn)180°后能與原圖形重合,∴此圖形是中心對(duì)稱圖形,不是軸對(duì)稱圖形,故此選項(xiàng)錯(cuò)誤;C.∵此圖形旋轉(zhuǎn)180°后不能與原圖形重合,∴此圖形不是中心對(duì)稱圖形,是軸對(duì)稱圖形,故此選項(xiàng)錯(cuò)誤;D.∵此圖形旋轉(zhuǎn)180°后能與原圖形重合,∴此圖形是中心對(duì)稱圖形,也是軸對(duì)稱圖形,故此選項(xiàng)正確.故選:D.【點(diǎn)睛】本題考查了中心對(duì)稱圖形與軸對(duì)稱圖形的定義,解題的關(guān)鍵是熟練的掌握中心對(duì)稱圖形與軸對(duì)稱圖形的定義.5、D【解析】

根據(jù)題意可以求得P1,點(diǎn)P2,點(diǎn)P3的坐標(biāo),從而可以發(fā)現(xiàn)其中的變化的規(guī)律,從而可以求得P2018的坐標(biāo),本題得以解決.【詳解】解:由題意可得,

點(diǎn)P1(1,1),點(diǎn)P2(3,-1),點(diǎn)P3(5,1),

∴P2018的橫坐標(biāo)為:2×2018-1=4035,縱坐標(biāo)為:-1,

即P2018的坐標(biāo)為(4035,-1),

故選:D.【點(diǎn)睛】本題考查了點(diǎn)的坐標(biāo)變化規(guī)律,解答本題的關(guān)鍵是發(fā)現(xiàn)各點(diǎn)的變化規(guī)律,求出相應(yīng)的點(diǎn)的坐標(biāo).6、C【解析】

先把能化簡(jiǎn)的數(shù)化簡(jiǎn),然后根據(jù)無(wú)理數(shù)的定義逐一判斷即可得.【詳解】A、3.14是有理數(shù);B、1.01001是有理數(shù);C、是無(wú)理數(shù);D、是分?jǐn)?shù),為有理數(shù);故選C.【點(diǎn)睛】本題主要考查無(wú)理數(shù)的定義,屬于簡(jiǎn)單題.7、C【解析】

科學(xué)記數(shù)法的表示形式為的形式,其中為整數(shù).確定的值時(shí),要看把原數(shù)變成時(shí),小數(shù)點(diǎn)移動(dòng)了多少位,的絕對(duì)值與小數(shù)點(diǎn)移動(dòng)的位數(shù)相同.當(dāng)原數(shù)絕對(duì)值>1時(shí),是正數(shù);當(dāng)原數(shù)的絕對(duì)值<1時(shí),是負(fù)數(shù).【詳解】用科學(xué)記數(shù)法表示1915.5億應(yīng)為1.9155×1011,故選C.【點(diǎn)睛】考查科學(xué)記數(shù)法,掌握絕對(duì)值大于1的數(shù)的表示方法是解題的關(guān)鍵.8、B【解析】

過(guò)F作FH⊥AD于H,交ED于O,于是得到FH=AB=1,根據(jù)勾股定理得到AF===,根據(jù)平行線分線段成比例定理得到,OH=AE=,由相似三角形的性質(zhì)得到=,求得AM=AF=,根據(jù)相似三角形的性質(zhì)得到=,求得AN=AF=,即可得到結(jié)論.【詳解】過(guò)F作FH⊥AD于H,交ED于O,則FH=AB=1.∵BF=1FC,BC=AD=3,∴BF=AH=1,F(xiàn)C=HD=1,∴AF===,∵OH∥AE,∴=,∴OH=AE=,∴OF=FH﹣OH=1﹣=,∵AE∥FO,∴△AME∽△FMO,∴=,∴AM=AF=,∵AD∥BF,∴△AND∽△FNB,∴=,∴AN=AF=,∴MN=AN﹣AM=﹣=,故選B.【點(diǎn)睛】構(gòu)造相似三角形是本題的關(guān)鍵,且求長(zhǎng)度問(wèn)題一般需用到勾股定理來(lái)解決,常作垂線9、D【解析】解:∵四邊形ABCD是平行四邊形,∴AH∥BG,AD=BC,∴∠H=∠HBG.∵∠HBG=∠HBA,∴∠H=∠HBA,∴AH=AB.同理可證BG=AB,∴AH=BG.∵AD=BC,∴DH=CG,故C正確.∵AH=AB,∠OAH=∠OAB,∴OH=OB,故A正確.∵DF∥AB,∴∠DFH=∠ABH.∵∠H=∠ABH,∴∠H=∠DFH,∴DF=DH.同理可證EC=CG.∵DH=CG,∴DF=CE,故B正確.無(wú)法證明AE=AB,故選D.10、A【解析】

觀察四個(gè)選項(xiàng)圖形,根據(jù)軸對(duì)稱圖形的概念即可得出結(jié)論.【詳解】根據(jù)軸對(duì)稱圖形的概念,可知:選項(xiàng)A中的圖形不是軸對(duì)稱圖形.故選A.【點(diǎn)睛】此題主要考查了軸對(duì)稱圖形,軸對(duì)稱圖形的關(guān)鍵是尋找對(duì)稱軸,對(duì)稱軸可使圖形兩部分折疊后重合.二、填空題(共7小題,每小題3分,滿分21分)11、將線段AB繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)90°,在向右平移2個(gè)單位長(zhǎng)度【解析】

根據(jù)圖形的旋轉(zhuǎn)和平移性質(zhì)即可解題.【詳解】解:將線段AB繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)90°,在向右平移2個(gè)單位長(zhǎng)度即可得到A′B′、【點(diǎn)睛】本題考查了旋轉(zhuǎn)和平移,屬于簡(jiǎn)單題,熟悉旋轉(zhuǎn)和平移的概念是解題關(guān)鍵.12、≤M≤6【解析】

把原式的xy變?yōu)?xy-xy,根據(jù)完全平方公式特點(diǎn)化簡(jiǎn),然后由完全平方式恒大于等于0,得到xy的范圍;再把原式中的xy變?yōu)?2xy+3xy,同理得到xy的另一個(gè)范圍,求出兩范圍的公共部分,然后利用不等式的基本性質(zhì)求出2-2xy的范圍,最后利用已知x2+xy+y2-2=0表示出x2+y2,代入到M中得到M=2-2xy,2-2xy的范圍即為M的范圍.【詳解】由得:即所以由得:即所以∴∴不等式兩邊同時(shí)乘以?2得:,即兩邊同時(shí)加上2得:即∵∴∴則M的取值范圍是≤M≤6.故答案為:≤M≤6.【點(diǎn)睛】此題考查了完全平方公式,以及不等式的基本性質(zhì),解題時(shí)技巧性比較強(qiáng),對(duì)已知的式子進(jìn)行了三次恒等變形,前兩次利用拆項(xiàng)法拼湊完全平方式,最后一次變形后整體代入確定出M關(guān)于xy的式子,從而求出M的范圍.要求學(xué)生熟練掌握完全平方公式的結(jié)構(gòu)特點(diǎn):兩數(shù)的平方和加上或減去它們乘積的2倍等于兩數(shù)和或差的平方.13、2【解析】分析:根據(jù)分式的運(yùn)算法則即可求出答案.詳解:當(dāng)a+b=2時(shí),原式===a+b=2故答案為:2點(diǎn)睛:本題考查分式的運(yùn)算,解題的關(guān)鍵熟練運(yùn)用分式的運(yùn)算法則,本題屬于基礎(chǔ)題型.14、①②③【解析】

由公交車在7至12分鐘時(shí)間內(nèi)行駛的路程可求解其行駛速度,再由求解的速度可知公交車行駛的時(shí)間,進(jìn)而可知小剛上公交車的時(shí)間;由上公交車到他到達(dá)學(xué)校共用10分鐘以及公交車行駛時(shí)間可知小剛跑步時(shí)間,進(jìn)而判斷其是否遲到,再由圖可知其跑步距離,可求解小剛下公交車后跑向?qū)W校的速度.【詳解】解:公交車7至12分鐘時(shí)間內(nèi)行駛的路程為3500-1200-300=2000m,則其速度為2000÷5=400米/分鐘,故①正確;由圖可知,7分鐘時(shí),公交車行駛的距離為1200-400=800m,則公交車行駛的時(shí)間為800÷400=2min,則小剛從家出發(fā)7-2=5分鐘時(shí)乘上公交車,故②正確;公交車一共行駛了2800÷400=7分鐘,則小剛從下公交車到學(xué)校一共花了10-7=3分鐘<4分鐘,故④錯(cuò)誤,再由圖可知小明跑步時(shí)間為300÷3=100米/分鐘,故③正確.故正確的序號(hào)是:①②③.【點(diǎn)睛】本題考查了一次函數(shù)的應(yīng)用.15、3.【解析】

先根據(jù)同角的余角相等證明∠ADE=∠ACD,在△ADC根據(jù)銳角三角函數(shù)表示用含有k的代數(shù)式表示出AD=4k和DC=3k,從而根據(jù)勾股定理得出AC=5k,又AC=5,從而求出DC的值即為AB.【詳解】∵四邊形ABCD是矩形,∴∠ADC=90°,AB=CD,∵DE⊥AC,∴∠AED=90°,∴∠ADE+∠DAE=90°,∠DAE+∠ACD=90°,∴∠ADE=∠ACD,∴tan∠ACD=tan∠ADE==,設(shè)AD=4k,CD=3k,則AC=5k,∴5k=5,∴k=1,∴CD=AB=3,故答案為3.【點(diǎn)睛】本題考查矩形的性質(zhì)和利用銳角三角函數(shù)解直角三角形,解決此類問(wèn)題時(shí)需要將已知角的三角函數(shù)、已知邊、未知邊,轉(zhuǎn)換到同一直角三角形中,然后解決問(wèn)題.16、x≥1【解析】分析:分別求出兩個(gè)不等式的解,從而得出不等式組的解集.詳解:解不等式①可得:x≥1,解不等式②可得:x>-3,∴不等式組的解為x≥1.點(diǎn)睛:本題主要考查的是不等式組的解集,屬于基礎(chǔ)題型.理解不等式的性質(zhì)是解決這個(gè)問(wèn)題的關(guān)鍵.17、【解析】

由題意可知:2x-y=,然后等式兩邊同時(shí)乘以-3得到-6x+3y=-,然后代入計(jì)算即可.【詳解】∵2x-y=,∴-6x+3y=-.∴原式=--1=-.故答案為-.【點(diǎn)睛】本題主要考查的是求代數(shù)式的值,利用等式的性質(zhì)求得-6x+3y=-是解題的關(guān)鍵.三、解答題(共7小題,滿分69分)18、(1)AB=2;相等;(2)a=±;(3),.【解析】

(1)①過(guò)點(diǎn)B作BN⊥x軸于N,由題意可知△AMB為等腰直角三角形,設(shè)出點(diǎn)B的坐標(biāo)為(n,-n),根據(jù)二次函數(shù)得出n的值,然后得出AB的值,②因?yàn)閽佄锞€y=x2+1與y=x2的形狀相同,所以拋物線y=x2+1與y=x2的“完美三角形”的斜邊長(zhǎng)的數(shù)量關(guān)系是相等;(2)根據(jù)拋物線的性質(zhì)相同得出拋物線的完美三角形全等,從而得出點(diǎn)B的坐標(biāo),得出a的值;根據(jù)最大值得出mn-4m-1=0,根據(jù)拋物線的完美三角形的斜邊長(zhǎng)為n得出點(diǎn)B的坐標(biāo),然后代入拋物線求出m和n的值.(3)根據(jù)的最大值為-1,得到化簡(jiǎn)得mn-4m-1=0,拋物線的“完美三角形”斜邊長(zhǎng)為n,所以拋物線2的“完美三角形”斜邊長(zhǎng)為n,得出B點(diǎn)坐標(biāo),代入可得mn關(guān)系式,即可求出m、n的值.【詳解】(1)①過(guò)點(diǎn)B作BN⊥x軸于N,由題意可知△AMB為等腰直角三角形,AB∥x軸,易證MN=BN,設(shè)B點(diǎn)坐標(biāo)為(n,-n),代入拋物線,得,∴,(舍去),∴拋物線的“完美三角形”的斜邊②相等;(2)∵拋物線與拋物線的形狀相同,∴拋物線與拋物線的“完美三角形”全等,∵拋物線的“完美三角形”斜邊的長(zhǎng)為4,∴拋物線的“完美三角形”斜邊的長(zhǎng)為4,∴B點(diǎn)坐標(biāo)為(2,2)或(2,-2),∴.(3)∵的最大值為-1,∴,∴,∵拋物線的“完美三角形”斜邊長(zhǎng)為n,∴拋物線的“完美三角形”斜邊長(zhǎng)為n,∴B點(diǎn)坐標(biāo)為,∴代入拋物線,得,∴(不合題意舍去),∴,∴19、(1)見(jiàn)解析;(2)12【解析】

(1)連接OC、BC,根據(jù)題意可得OC2+PC2=OP2,即可證得OC⊥PC,由此可得出結(jié)論.(2)先根據(jù)題意證明出△PBC∽△PCA,再根據(jù)相似三角形的性質(zhì)得出邊的比值,由此可得出結(jié)論.【詳解】(1)如圖,連接OC、BC∵⊙O的半徑為3,PB=2∴OC=OB=3,OP=OB+PB=5∵PC=1∴OC2+PC2=OP2∴△OCP是直角三角形,∴OC⊥PC∴PC是⊙O的切線.(2)∵AB是直徑∴∠ACB=90°∴∠ACO+∠OCB=90°∵OC⊥PC∴∠BCP+∠OCB=90°∴∠BCP=∠ACO∵OA=OC∴∠A=∠ACO∴∠A=∠BCP在△PBC和△PCA中:∠BCP=∠A,∠P=∠P∴△PBC∽△PCA,∴∴tan∠CAB=【點(diǎn)睛】本題考查了切線與相似三角形的判定與性質(zhì),解題的關(guān)鍵是熟練的掌握切線的判定與相似三角形的判定與性質(zhì).20、(1);(2)①有最大值1;②(2,3)或(,)【解析】

(1)根據(jù)自變量與函數(shù)值的對(duì)應(yīng)關(guān)系,可得A,C點(diǎn)坐標(biāo),根據(jù)代定系數(shù)法,可得函數(shù)解析式;(2)①根據(jù)相似三角形的判定與性質(zhì),可得,根據(jù)平行于y軸直線上兩點(diǎn)間的距離是較大的縱坐標(biāo)減較小的縱坐標(biāo),可得二次函數(shù),根據(jù)二次函數(shù)的性質(zhì),可得答案;②根據(jù)勾股定理的逆定理得到△ABC是以∠ACB為直角的直角三角形,取AB的中點(diǎn)D,求得D(,0),得到DA=DC=DB=,過(guò)P作x軸的平行線交y軸于R,交AC于G,情況一:如圖,∠PCF=2∠BAC=∠DGC+∠CDG,情況二,∠FPC=2∠BAC,解直角三角形即可得到結(jié)論.【詳解】(1)當(dāng)x=0時(shí),y=2,即C(0,2),當(dāng)y=0時(shí),x=4,即A(4,0),將A,C點(diǎn)坐標(biāo)代入函數(shù)解析式,得,解得,拋物線的解析是為;

(2)過(guò)點(diǎn)P向x軸做垂線,交直線AC于點(diǎn)M,交x軸于點(diǎn)N,∵直線PN∥y軸,∴△PEM~△OEC,∴把x=0代入y=-x+2,得y=2,即OC=2,設(shè)點(diǎn)P(x,-x2+x+2),則點(diǎn)M(x,-x+2),∴PM=(-x2+x+2)-(-x+2)=-x2+2x=-(x-2)2+2,∴=,∵0<x<4,∴當(dāng)x=2時(shí),=有最大值1.②∵A(4,0),B(-1,0),C(0,2),∴AC=2,BC=,AB=5,∴AC2+BC2=AB2,∴△ABC是以∠ACB為直角的直角三角形,取AB的中點(diǎn)D,∴D(,0),∴DA=DC=DB=,∴∠CDO=2∠BAC,∴tan∠CDO=tan(2∠BAC)=,過(guò)P作x軸的平行線交y軸于R,交AC的延長(zhǎng)線于G,情況一:如圖,∴∠PCF=2∠BAC=∠PGC+∠CPG,∴∠CPG=∠BAC,∴tan∠CPG=tan∠BAC=,即,令P(a,-a2+a+2),∴PR=a,RC=-a2+a,∴,∴a1=0(舍去),a2=2,∴xP=2,-a2+a+2=3,P(2,3)情況二,∴∠FPC=2∠BAC,∴tan∠FPC=,設(shè)FC=4k,∴PF=3k,PC=5k,∵tan∠PGC=,∴FG=6k,∴CG=2k,PG=3k,∴RC=k,RG=k,PR=3k-k=k,∴,∴a1=0(舍去),a2=,xP=,-a2+a+2=,即P(,),綜上所述:P點(diǎn)坐標(biāo)是(2,3)或(,).【點(diǎn)睛】本題考查了二次函數(shù)綜合題,解(1)的關(guān)鍵是待定系數(shù)法;解(2)的關(guān)鍵是利用相似三角形的判定與性質(zhì)得出,又利用了二次函數(shù)的性質(zhì);解(3)的關(guān)鍵是利用解直角三角形,要分類討論,以防遺漏.21、(1)證明見(jiàn)解析;(1).【解析】

(1)由平行四邊形的判定得出四邊形OCED是平行四邊形,根據(jù)矩形的性質(zhì)求出OC=OD,根據(jù)菱形的判定得出即可.(1)解直角三角形求出BC=1.AB=DC=1,連接OE,交CD于點(diǎn)F,根據(jù)菱形的性質(zhì)得出F為CD中點(diǎn),求出OF=BC=1,求出OE=1OF=1,求出菱形的面積即可.【詳解】證明:,,四邊形OCED是平行四邊形,矩形ABCD,,,,,四邊形OCED是菱形;在矩形ABCD中,,,,,,連接OE,交CD于點(diǎn)F,四邊形OCED為菱形,為CD中點(diǎn),為BD中點(diǎn),,,.【點(diǎn)睛】本題主要考查了矩形的性質(zhì)和菱形的性質(zhì)和判定的應(yīng)用,能靈活運(yùn)用定理進(jìn)行推理是解此題的關(guān)鍵,注意:菱形的面積等于對(duì)角線積的一半.22、(1);(2).【解析】

(1)一共4個(gè)小球,則任取一個(gè)球,共有4種不同結(jié)果,摸出球上的漢字剛好是“美”的概率為;(2)列表或畫(huà)出樹(shù)狀圖,根據(jù)一共出現(xiàn)的等可能的情況及恰能組成“美麗”或“光明”的情況進(jìn)行解答即可.【詳解】(1)∵“美”、“麗”、“光”、“明”的四個(gè)小球,任取一球,共有4種不同結(jié)果,∴任取一個(gè)球,摸出球上的漢字剛好是“美”的概率P=(2)列表如下:美麗光明美----(美,麗)(光,美)(美,明)麗(美,麗)----(光,麗)(明,麗)光(美,光)(光,麗)----(光,明)明(美,明)(明,麗)(光,明)-------根據(jù)表格可得:共有12中等可能的結(jié)果,其中恰能組成“美麗”或“光明”共有4種,故取出的兩個(gè)球上的漢字恰能組成“美麗”或“光明”的概率.【點(diǎn)睛】此題考查的是用列表法或樹(shù)狀圖法求概率與不等式的性質(zhì).注意樹(shù)狀圖法與列表法可以不重復(fù)不遺漏的列出所有可能的結(jié)果,列表法適合于兩步完成的事件;樹(shù)狀圖法適合兩步或兩步以上完成的事件;注意概率=所求情況數(shù)

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論