版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領
文檔簡介
PLOTTINGFROMABOVE
ENHANCINGAGRICULTURALMAPPINGINASIAANDTHEPACIFIC
AnthonyBurgard;AnnaChristineDurante;PamelaLapitan;
MahinthanJosephMariasingham;ArturoY.Pacificador,Jr.;andMashalRiaz
JUNE2024
ASIANDEVELOPMENTBANK
PLOTTINGFROMABOVE
ENHANCINGAGRICULTURALMAPPINGINASIAANDTHEPACIFIC
AnthonyBurgard;AnnaChristineDurante;PamelaLapitan;
MahinthanJosephMariasingham;ArturoY.Pacificador,Jr.;andMashalRiaz
JUNE2024
ASIANDEVELOPMENTBANK
CreativeCommonsAttribution3.0IGOlicense(CCBY3.0IGO)
?2024AsianDevelopmentBank
6ADBAvenue,MandaluyongCity,1550MetroManila,Philippines
Tel+63286324444;Fax+63286362444
Somerightsreserved.Publishedin2024.
ISBN978-92-9270-774-3(print);978-92-9270-775-0(PDF);978-92-9270-776-7(ebook)PublicationStockNo.TCS240326-2
DOI:
/10.22617/TCS240326-2
TheviewsexpressedinthispublicationarethoseoftheauthorsanddonotnecessarilyreflecttheviewsandpoliciesoftheAsianDevelopmentBank(ADB)oritsBoardofGovernorsorthegovernmentstheyrepresent.
ADBdoesnotguaranteetheaccuracyofthedataincludedinthispublicationandacceptsnoresponsibilityforany
consequenceoftheiruse.ThementionofspecificcompaniesorproductsofmanufacturersdoesnotimplythattheyareendorsedorrecommendedbyADBinpreferencetoothersofasimilarnaturethatarenotmentioned.
Bymakinganydesignationoforreferencetoaparticularterritoryorgeographicareainthisdocument,ADBdoesnotintendtomakeanyjudgmentsastothelegalorotherstatusofanyterritoryorarea.
ThispublicationisavailableundertheCreativeCommonsAttribution3.0IGOlicense(CCBY3.0IGO)
/licenses/by/3.0/igo/
.Byusingthecontentofthispublication,youagreetobeboundbythetermsofthislicense.Forattribution,translations,adaptations,andpermissions,pleasereadtheprovisionsandtermsofuseat
/terms-use#openaccess
.
ThisCClicensedoesnotapplytonon-ADBcopyrightmaterialsinthispublication.Ifthematerialisattributed
toanothersource,pleasecontactthecopyrightownerorpublisherofthatsourceforpermissiontoreproduceit.ADBcannotbeheldliableforanyclaimsthatariseasaresultofyouruseofthematerial.
Pleasecontactpubsmarketing@ifyouhavequestionsorcommentswithrespecttocontent,orifyouwishtoobtaincopyrightpermissionforyourintendedusethatdoesnotfallwithintheseterms,orforpermissiontousetheADBlogo.
CorrigendatoADBpublicationsmaybefoundat
/publications/corrigenda
.
Notes:
Inthispublication,“$”referstoUnitedStatesdollars.ADBrecognizes“RepublicofArmenia”asArmenia.
Photos:AllphotosbytheAsianDevelopmentBankunlessotherwiseindicated.
Featuredonthecover,startingfromthetopleftandmovingclockwise,areimagescapturingfieldworkconductedinArmenia,theCookIslands(includingthethirdphoto),andtheLaoPeople'sDemocraticRepublic.ThefifthphotoisfromaremotesensingtrainingsessioninVietNam.
CONTENTS
TablesandFiguresv
TablesandFiguresiv
Forewordv
Introduction1
Methodology5
AnalysisofReportedandMeasuredArea16
ImplicationsforPolicyandRecommendations25
Conclusion26
Appendixes
12022CookIslandsPostEnumerationSurveyDesign27
2
DetailsofAreaSamplingFramefor2022PostEnumerationSurveyoftheCookIslands
34
3
2022CookIslandsPostEnumerationSurveyQuestionnaire
39
4
ProtocolsforGPSParcelAreaMeasurement
45
5
ProceduresforEditingGPSDataCollectedforAreaMeasurement
49
References
51
iii
TABLESANDFIGURES
Tables
Tables
1NumberofAgriculturalHouseholdsbyLevelofAgriculturalActivityfrom2011and2021Censuses9
ofPopulationandDwellingCookIslands
2ComparisonBetweenthe2011CensusofAgricultureand2022ADBPostEnumerationSurvey10
NumberofAgriculturalHouseholdsbyLevelofAgriculturalActivityBasedonCensusof
AgricultureDefinitions
3EstimatedTotalAreainSquareMetersandAcresofAgriculturalHoldings16
4ComparisonofEstimatedTotalAreaofHoldingsbyReportedandGPS-AssistedMeasurements17
A1.1DescriptiveStatisticsofSelectedEnumerationAreaCharacteristics(Rarotonga,CookIslands2021,32
78EnumerationAreas)
A1.2CorrelationMatrixBetweenDesign-TestVariables(A1,A2)andStratificationVariables(A3,A4)32
A1.3MeanandCoefficientofVariationValuesofDesign-TestVariablesbyStrata.33
A1.4CalculatedSampleSize(NumberofEnumerationAreas)atDifferentLevelsofTargetedPrecision34
Figures
1LandUseandLandCoverClassificationsofRarotonga7
2AgriculturalIntensityonRarotongaIsland,CookIslands7
3DefinitionsforLevelofAgriculturalActivityin2011CensusofAgricultureandthe2022Post9
EnumerationSurvey,CookIslands
4EffectsofGPSErroronAreaMeasurement11
5CookIslands—ParcelAreasCapturedbyHandheldGPS,GarmineTrex32x12
7CookIslands—ParcelAreasCapturedbyDigitizationonSatelliteImageMethod13
6DigitizinganAgriculturalParcelBoundaryinSurveySolutions13
8DigitizinganAgriculturalParcelBoundarybyWalkingAroundtheParcelinSurveySolutions14
9GPSMeasurementErrorsinIrregularShapes14
10DigitizationofAgriculturalParcelonSatelliteImagebySelectionofParcelCorners15
11CookIslands—Farmer-ReportedandDigitizedAreasVersusGPSAreaMeasurement18
12QuantileRegressionCoefficientsComparingFarmer-ReportedandGPSAreaMeasurement19
13DifferencesinthePerceptionofScaleasCapturedbyWalking(Green)andDigitization(Red)Methods20
14ArmeniaFarmer-ReportedandDigitizedAreaVersusGPSAreaMeasurement21
15GPSParcelAreasCapturedinPakPokVillage,VangVieng,VientianeProvince,LaoPeople’s22
DemocraticRepublic
iv
TablesandFigures
16LaoPeople’sDemocraticRepublicFarmer-ReportedandDigitizedAreaVersusGPSAreaMeasurement23
A1SampleEnumerationAreasSelectedforthePostEnumerationSurvey35
A4.1SampleSketchofParcel48
A4.2CheckingSatelliteAccuracyontheGarmineTrex32x49
A3.3MarkingaWaypointontheGarmineTrex32x49
A4.4MarkingaWaypointontheGarmineTrex32x50
A4.5SavingtheParcelArea50
A4.6WorkflowofGPSAreaMeasurementProtocol51
v
FOREWORD
ThisreportPlottingfromAbove:EnhancingAgriculturalMappinginAsiaandthePacificprovidesacomprehensiveoverviewoftheapplicationofamethodologyforagriculturalareameasurementandinsightsgainedfromits
implementationinthesethreecountries.
TheAsianDevelopmentBank(ADB)haslaunchedatechnicalassistanceprojecttostrengthenthecapabilities
ofnationalstatisticsofficesandotherministries,equippingthemwiththenecessaryskillstomeettheSustainableDevelopmentGoals’increasingdatademands.Apioneeringaspectofthisprojectistheuseofgeospatial
technologies,whichhavebeenemployedtocreatemethodologicaltoolsforagriculturalareameasurement.
Thesetoolsaredesignedtoevaluatethediscrepanciesinagriculturalareaestimatesbetweentraditionalfarmer-reportedmethodsandmoremodernapproachesusingGlobalPositioningSystem(GPS)devicesforobjective
measurements.
Agriculturallandisacrucialassetforfarmers,servingasthefoundationoftheireconomiclivelihood.Itfacilitatesvariousactivitiessuchascropcultivation,animalhusbandry,fisheries,andforestry.Historically,obtainingaccurateandunbiasedmeasurementsofagriculturallandshasbeenachallengingaspectofagriculturalstatistics.However,byidentifyingandaddressingbiasesinthesemeasurements,policymakerscangainamorepreciseunderstanding
ofagriculturalproductivity.Theadventofgeospatialtechnologieshasmadethistaskmoreaccessibleand
economical,revolutionizingthewayagriculturalareasaremeasured.Thistechnologicalshifthasmadeobjectiveareameasurementnotonlymorefeasiblebutalsomorecost-effective.
Thisreportfeaturesanin-depthanalysisofanareaframeapproachimplementedintheCookIslands.Theapproachusesnon-overlappingandrelativelyfixedgeographicalunitsfromwhichasamplemaybedrawn,insteadofthe
moretime-consumingtraditionallistframecomprisingagriculturalholdingscompiledduringanagriculturalcensus.
Geospatialdatacanbeintegratedwithasampleofpolygonsdrawnfromanareaframe,whichcanbefurtherstratifiedbyvariouscharacteristicssuchastopography.
Additionally,thereportdelvesintotheuseofgeospatialtechnologiestoassessbiasesinagriculturallandreporting
inArmenia,theCookIslands,andtheLaoPeople'sDemocraticRepublic(PDR).Thestudyemployedarangeof
geospatialtechniquesforanunbiasedmeasurementofagriculturalland.Oneofthekeystrengthsofthisstudyisitsexplorationofthefeasibilityandapplicabilityoftheapproachacrossthreecountriesindifferentregionswithdistinctcharacteristics,agroclimaticconditions,andsocio-politicalcontexts.
TheADBprojectteamwouldliketotakethisopportunitytothanktheimplementingagenciesfromtheStatisticalCommitteeoftheRepublicofArmenia,theCookIslandsMinistryofAgriculture,andtheLaoPDRMinistryof
AgricultureandForestryfortheirinvaluablecontributionsandofferingcriticalinsightsintothediverseagriculturalpracticesacrossAsiaandthePacific.TheteamisgratefultoMr.GagikAnanyan,DeputyofthePresidentofthe
StatisticalCommitteeoftheRepublicofArmenia;Mrs.TemaramaAnguna-Kamana,SecretaryofAgriculture,CookIslandsMinistryofAgriculture;andMs.KhamvayNanthavong,DirectoroftheCenterforAgriculturalStatisticsof
vi
Foreword
theLaoPDRMinistryofAgricultureandForestryforspearheadingtheimplementationoftheprojectinthepilot
areas.SinceregratitudeisofferedtoArsenAvagyan,WilliamWigmore,TearoaIorangi,PunaKamoe,Angeylie
Ngaoire,andSengphachanKhounthikoummane,forprovidingtechnicalandlogisticalsupportintheconductofallprojectactivities.Further,theteamwouldliketoexpressappreciationtofieldandtechnicalstafffortheirdedicationtocollecting,processing,andanalyzingthedatafromwhichthisstudywouldnotbepossible.
ThereporthasbeenproducedbytheStatisticsandDataInnovationUnitwithintheEconomicResearchand
DevelopmentImpactDepartmentatADB,undertheoveralldirectionofElaineS.Tan.TheprojectandreportteamswereledbyMahinthanJosephMariasingham,withvaluableresearchandtechnicalsupportfromAnthonyBurgard,AnnaChristineDurante,PamelaLapitan,ArturoY.PacificadorJr.,andMashalRiaz.MelanieKellehercopyeditedthefinalmanuscript,EdithCreustypesetthereport,andClaudetteRodrigopreparedthecoverdesign.
Itishopedthatthisstudyaidsintheevolutionofmethodologiesformeasuringagriculturalareas.Thismethodologicaladvancementholdsthepotentialtoenhanceaccessibilityandaccuracyinagriculturaldatacollection.Itisanticipatedthatthisreportwillhaveapositiveinfluenceonthefutureofagriculturalstatistics.
AlbertFrancisPark
ChiefEconomistandDirectorGeneral
EconomicResearchandDevelopmentImpactDepartmentAsianDevelopmentBank
vii
INTRODUCTION
ATechnologicalShiftinAgriculturalStatistics
Thegrowingaccessibilityofgeospatialtechnologiesisreshapinghowagriculturalstatisticsaregathered,processed,anddisseminated.Advancedtechnologieslikeremotesensingusingsatelliteimagery,GlobalPositioningSystem
(GPS),andunmannedaerialvehicles(UAVs)offerthepotentialformoreefficientmethodstomonitorchangesinagriculturewithgreaterprecisionandfrequency.
Oncecost-prohibitiveforlarge-scalestatisticaldatacollection,geospatialtechnologiesarebecomingincreasinglycommonplace,efficient,andaccessibleinofficialstatistics.Consumer-gradeequipmentisnowmorecapable
andlessexpensive.Ascomputer-assistedinterviewingdatacollectionmethodsonceusheredinthedigitizationofstatisticaldatacollections,thesamemoderntechnologiesintabletcomputersprovideameanstosimplify
geospatialdatacollection.Itisnowmorecommonplaceforagriculturaldataproducerstoregularlycollect,forexample,thepointlocationofagriculturalhouseholdsandboundaryareasofagricultureandcroplands.
Similarly,thecostofremotesensingsatelliteimageryhasdecreased,largelyduetoinitiativesbyorganizationsliketheEuropeanSpaceAgency(ESA),theJapanAerospaceExplorationAgency,andtheNationalAeronauticsandSpaceAdministration,whichhavemadehigh-resolutionsatelliteimagerymorereadilyavailableasafreeglobal
publicgood.
GreateraccessibilityofUAVsandultra-high-resolutionimageryhaveempowered,forexample,thePacificislandcountries—whichhavetraditionallybeensusceptibletoclimatechange—toregularlymapandmonitorland
changeswithgreaterdetailandtimeliness.Theseadvancementspavethewayforthebroaderadoptionandutilizationofgeospatialtechnologies,significantlyenhancingagriculturalstatistics.
OneoftheobjectivesoftheAsianDevelopmentBank(ADB)technicalassistanceprojectistointegrategeospatialtechnologiesintotraditionalsurveydesignandbuildthecapacityofdataproducersintheregiononitspotential
usecaseapplications.Despitetheincreasingrelevanceofsuchtechnology,nationalstatisticalofficesandofficialproducersofagriculturalstatisticsoftenfacechallengesinitsutilization.Thisincludeshiringstaffskilledin
workingwiththesedatatypesandupgradinginformationtechnologyinfrastructuretomanagethelargerdatasets.Whilemanyorganizationshaveestablishedgeographicinformationsystem(GIS)unitswithintheiroffices,their
applicationisprimarilylimitedtocreatinganddistributingmaps.Therehasbeenlimitedprogressbycomparisoninintegratinggeospatialtechniquesintosurveydesignanddatacollectionprocesses.
Oneinnovation,however,usesgeospatialtechniquesforsurveydesignandimprovesuponthetraditional
samplinglistframe.Constructionofthetraditionallistframe—acomprehensivelistofagriculturalholdingsina
country—isacostlyundertakingoftencompletedonceevery5to10yearsduringagriculturecensusesand—ifwellmaintained—updatedthroughasystemofintercensalagriculturalsurveys.Thelistframeisapainpointformany
1
PlottingfromAbove
officialdataproducersasitisnotoriouslydifficultandexpensivetobuild,update,andmaintain.Whilecountries
intheregionhavetrendedtopursueafarmer-registry-basedapproachtotheconstructionoftheseframes,they
arecurrentlylimitedbylowfarmervolunteerratesandmaylackkeyauxiliarydatatoserveasaneffectivesamplinglistframe.Acomplementaryapproachhasbeenforofficialstatisticsproducerstoadoptamixed-frameapproachincorporatingtheuseofanareaframe.Anareaframeconsistsofnon-overlappingandrelativelyfixedgeographicalunitsfromwhichasamplemaybetaken.
Alimitationofareaframesisthattheyarenotalwaysoptimizedforstatisticalpurposesandareconstructedwith
broaderusecases,suchasthedemarcationofadministrativeboundaries.Thisoftenresultsininsufficientauxiliaryinformationtoenhancesurveysampleefficiency.Withthegrowingaccessibilityofgeospatialdata,opportunities
existtointegratediversegeospatialdatasources,includinglanduseorlandcovermaps,topographicalmaps,and
thelocationsofnaturalandhuman-madefeatures.Usinglocationasareferencepoint,thesedatacanbeintegratedtoenhancesamplingmethods.Thisintegrationallowsformoreefficientor“smart”samplingapproaches—suchas
stratifyingbydifferingagriculturalcharacteristics—therebyimprovingtheaccuracyandefficiencyofdatacollectionprocesses.Thisstratificationcould,forexample,bebasedonthedensityoftheestimatedagriculturalareaor
distinctagroecologicalzones,thusimprovingtheprecisionofthesurveysample.
InseveralAsiancountries,nationalstatisticalofficesandagriculturallineministriesaretransitioningtoprecisionagricultureusingdigitalrecordsandgeospatialinformationtomapagriculturalareas.Thisincludesdigitizing
agriculturalparcelstoenhanceproductionstatisticsestimationasseeninthelastagriculturecensusofthe
People’sRepublicofChina,theSmartFarmInitiativeintheRepublicofKorea,andtheagriculturaladministrativerecordsysteminSriLanka.Additionally,theseplatformsofferthepotentialforasystemofgroundtruthvalidationpointsrequiredforothertechnicalestimationsuchasremotesensing-basedcropestimation.
ThispaperwillexploreacasestudyforimplementinganareaframeapproachintheCookIslandsusingalandcovermapdevelopedwiththeassistanceofESAasanauxiliarydatasource.Thelandcovermap—createdfromhigh-
resolutionsatelliteimageryofRarotongaIslandin2021—enabledtheclassificationofareaswithahighprobabilityofagriculturalproduction.Thisclassificationwasinstrumentalindeterminingthesampleallocationforapost
enumerationsurveyconductedafterthe2021AgricultureCensus.
Thepaperwillfurtherinvestigateusinggeospatialtechnologiestoevaluatebiasesinreportingagriculturalland
inArmenia,theCookIslands,andtheLaoPeople’sDemocraticRepublic(LaoPDR).Thestudyapplieddiverse
geospatialmethodsforanobjectivemeasurementofagriculturalland,includingspecializedhandheldGPSdevicesandtablet-basedsoftwarefordigitizingtheboundariesofagriculturalparcelsonhigh-resolutionsatelliteimagery.
AgriculturalLandisaKeyFactorinEconomicProduction
Agriculturallandisakeyproductiveassetforfarmers,formingthebaseoftheireconomiclivelihood.Itisakeyfactorofproduction,enablingthegrowingofcrops,raisinganimals,fisheries,andforestryactivities.Thesizeofagricultural
landisacriticalstatisticfromapolicyperspectiveasithelpspolicymakersbetterunderstandhowfarmingis
structuredinacountry.Accuratemeasurementsofagriculturalareaareimportantforevaluatinghowproductivefarmsare,planningforagriculturalgrowth,andmakingeffectiveagriculturalpolicies.
Fromamacroeconomicperspective,agriculturallandareafeedsintothecriticalcalculationofpotentialeconomicoutput.Inmanycases,cropproductionstatisticsarederivedbasedonreportedagriculturalareamultipliedbyanaverageyieldestimateforthelocality.Anybiasesinlandareaestimatesreportedbythefarmerwillsignificantly
compoundtheestimatefortotalagriculturaloutput.
2
Introduction
Biasesinestimatingagriculturalareasmayalsonegativelyimpactresourceallocationstogovernmentsupport
programs.Foodsecurityisaprimaryconcernformanygovernments,especiallythoseinclimate-vulnerableareassuchasthePacificislandcountries.Anoverestimationorunderestimationofagriculturallandarea—andtherebyproduction—canaffecttheabilityofacountrytomeetitscaloricandnutrientneedssustainably.Andwherefoodsecurityisachallenge,improvedstatisticsontheagriculturalareahelpgovernmentsimproveplanstoimportkeyagriculturalcommoditiestomeettheserequirements.Thesedatamaythenbeusedtosupportcropandinput
subsidies,cropinsuranceschemes,andadditionaltechnicalsupportthroughagriculturalextensionservices.
Finally,agriculturesignificantlyimpactstheenvironment,contributingtogreenhousegasemissionsand
encroachmentonnaturalforests,leadingtobiodiversityloss.Improvedestimatesofagriculturallanduseareessentialforurbanandrurallanduseplanningandmanagingtheseimpactsinthelongterm.
RecallBiasesinEstimatingAgriculturalLand
Thecommonmethodforestimatingagriculturallandincensusandsurveysinvolvessubjectiverecallbyfarmers,
askingthemtoreporttheextentoftheiroperatedland.Thisapproachpresentsseveralchallenges.Itassumes
farmers’understandingofthetermoperationalagriculturalland,aconceptthatcanintroducenon-samplingbiasesifunclear.Theseissuesarecompoundedbydifferencesinagriculturalpracticesthroughouttheregion,wherein
somecountries,itmaybecommontosharecommunalareasforagriculturalproductionandliveandworkinareaswherelandtenureisnotclearlydefined.
Thismethodassumesfarmershaveaccurateknowledgeofthesizeoftheirland.Thisknowledgeistypicallybasedoninformationfromformallandtitlesordeeds,providingofficialdocumentationofprecisemeasurementsofthe
land.Withoutthesedocuments,farmers’estimatesmaybelargelyspeculative.InArmenia,forexample,astrong
landcadastralsystemexistsinwhichlandareaislinkedwithpropertytaxandgovernmentplanningsystems.Insuchcases,farmerknowledgeoftheirareaisbasedonhowupdatedthesesystemsareandtheextentofpublicaccesstothesedocuments.
Thereisalsotheissueofreportedareameasurementunits.Familiaritywithstandardunitsofareameasurementisnotalwayscommonamongfarmers.Forinstance,intheCookIslands,afarmermightdescribetheirlandintermsofarugbyfieldsizeorreferencenaturallandmarkslikealargetree.IntheLaoPDR,localunitssuchas“l(fā)ai”and“ngam”arecommon,complicatingaccuratereportinginstandardizedunitslikeacresorhectares.Farmersmayusedifferentareaunitsfordifferentlandfeaturesincertaininstances.Forexample,totalareamightbereportedinacres,while
individualplotsaredescribedinsquaremeters(m2).Differencesinareaunitsreportedmayburdenthefieldstaffwhenperformingqualityassurancechecks.
Thelackoffamiliaritywithstandardizedunitsofmeasurementaddstotheresponseburdenforfarmers,leading
themtoeitherinaccuratelyconverttheunitsorgivespeculativeanswers.Toaddressthis,agriculturalsurveys
increasinglypermitrespondentstospecifytheunitsusedforeacharea-relatedquestion.However,inconsistencies
inreportedareasremainacommonissue.Theserequirecarefulvalidationandadjustmentduringthedataprocessingtoensureaccuracyandconsistency.
Finally,thephysicalcharacteristicsofthelandcanhinderaccurateareaestimation.InmanyAsianandPacific
countries—especiallysmallholdermixedcroppingsystems—agriculturalparcelsoftenhaveirregularshapes.
Theymaybesituatedinsteepmountainousterrain,affectingfarmers’perceptionoftheirsize.Thiscomplexitycanleadtoinaccuraciesinreportedlandarea,significantlyimpactingthequalityofagriculturalstatistics.
3
PlottingfromAbove
IntroducingObjectiveMeasurementstoAssessAgriculturalLand
Acknowledgingthesubjectivebiasesassociatedwithfarmerrecalldata,oneapproachtomitigatethisisbyintroducing
objectiveareameasurement.Traditionally,objectiveareameasurementinvolveslandsurveyingtodelineateagriculturalparcelsusingthetape-and-compassapproach(FAO,1982).Thismethodentailsmeasuringeachsideoftheparcel
withatapemeasureandusingacompasstodeterminetheanglesbetweensides.However,thistechniqueistime-consumingandresource-intensive.Italsodemandshighlyskilledworkerstoperformprecisemeasurementsandcalculatetheareausingcomplextrigonometricfunctions.Whendonecorrectly,however,thetapeandcompass
methodisconsideredthe“goldstandard”foragriculturalareameasurement(Carlettoetal.,2016).
In2018,ADBconductedapilotstudytoexploreusingGPSandsatellitedataastechnologicalalternativesfor
objectivelymeasuringagriculturalparcels.Thestudyfindingsindicatedthatthesemethodsalignedwellwiththe
“goldstandard”ofmeasurementand,onaverage,weremor
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 生物標志物在藥物臨床試驗中的數(shù)據(jù)解讀
- 生物材料在醫(yī)療器械中的專利策略
- 生物制品穩(wěn)定性試驗異常結(jié)果調(diào)查流程
- 深度解析(2026)《GBT 20481-2017氣象干旱等級》
- 生活方式干預在糖尿病前期管理中的作用
- 通號公司銷售工程師面試題庫含答案
- 扶貧項目實施效果考試題庫
- 高級ESG數(shù)據(jù)分析案例考試題
- 書媽媽課件教學課件
- 深度解析(2026)《GBT 18932.18-2003蜂蜜中羥甲基糠醛含量的測定方法 液相色譜-紫外檢測法》
- 雨課堂學堂在線學堂云《芊禮-謙循-送給十八歲女大學生的成人之禮(中華女子學院 )》單元測試考核答案
- 智慧農(nóng)貿(mào)市場建設項目報告與背景分析
- 護理部競選副主任
- 【10篇】新版部編六年級上冊語文課內(nèi)外閱讀理解專項練習題及答案
- 2026年中國經(jīng)濟展望:風鵬正舉
- 老年健康服務中的多學科團隊協(xié)作
- 上市公司部門組織架構(gòu)及崗位職責大全
- 公司紡粘針刺非織造布制作工合規(guī)化技術規(guī)程
- 雨課堂學堂云在線《人工智能原理》單元測試考核答案
- 蘇州中醫(yī)院護理試題題庫及答案解析
- 撞人出院協(xié)議書
評論
0/150
提交評論