江蘇省南通市如皋2023-2024學年中考五模數(shù)學試題含解析_第1頁
江蘇省南通市如皋2023-2024學年中考五模數(shù)學試題含解析_第2頁
江蘇省南通市如皋2023-2024學年中考五模數(shù)學試題含解析_第3頁
江蘇省南通市如皋2023-2024學年中考五模數(shù)學試題含解析_第4頁
江蘇省南通市如皋2023-2024學年中考五模數(shù)學試題含解析_第5頁
已閱讀5頁,還剩20頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

江蘇省南通市如皋2023-2024學年中考五模數(shù)學試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.二次函數(shù)y=ax2+bx+c(a≠0)的部分圖象如圖,圖象過點(-1,0),對稱軸為直線x=2,下列結(jié)論:①4a+b=0;②9a+c>3b;③8a+7b+2c>0;④當x>-1時,y的值隨x值的增大而增大.其中正確的結(jié)論有()A.1個 B.2個 C.3個 D.4個2.如圖,△ABC中,若DE∥BC,EF∥AB,則下列比例式正確的是()A. B.C. D.3.一個幾何體的三視圖如圖所示,則該幾何體的表面積是()A.24+2π B.16+4π C.16+8π D.16+12π4.某廣場上有一個形狀是平行四邊形的花壇(如圖),分別種有紅、黃、藍、綠、橙、紫6種顏色的花.如果有AB∥EF∥DC,BC∥GH∥AD,那么下列說法錯誤的是()A.紅花、綠花種植面積一定相等B.紫花、橙花種植面積一定相等C.紅花、藍花種植面積一定相等D.藍花、黃花種植面積一定相等5.如圖,等腰三角形ABC底邊BC的長為4cm,面積為12cm2,腰AB的垂直平分線EF交AB于點E,交AC于點F,若D為BC邊上的中點,M為線段EF上一點,則△BDM的周長最小值為()A.5cm B.6cm C.8cm D.10cm6.一個盒子內(nèi)裝有大小、形狀相同的四個球,其中紅球1個、綠球1個、白球2個,小明摸出一個球不放回,再摸出一個球,則兩次都摸到白球的概率是()A. B. C. D.7.已知一個多邊形的內(nèi)角和是外角和的3倍,則這個多邊形是()A.五邊形 B.六邊形 C.七邊形 D.八邊形8.關于?ABCD的敘述,不正確的是()A.若AB⊥BC,則?ABCD是矩形B.若AC⊥BD,則?ABCD是正方形C.若AC=BD,則?ABCD是矩形D.若AB=AD,則?ABCD是菱形9.如圖,在平面直角坐標系中,△ABC與△A1B1C1是以點P為位似中心的位似圖形,且頂點都在格點上,則點P的坐標為()A.(﹣4,﹣3) B.(﹣3,﹣4) C.(﹣3,﹣3) D.(﹣4,﹣4)10.下列實數(shù)中,在2和3之間的是()A. B. C. D.11.2018年1月份,菏澤市市區(qū)一周空氣質(zhì)量報告中某項污染指數(shù)的數(shù)據(jù)是41,45,41,44,40,42,41,這組數(shù)據(jù)的中位數(shù)、眾數(shù)分別是()A.42,41 B.41,42 C.41,41 D.42,4512.若關于x的方程=3的解為正數(shù),則m的取值范圍是()A.m< B.m<且m≠C.m>﹣ D.m>﹣且m≠﹣二、填空題:(本大題共6個小題,每小題4分,共24分.)13.如圖,在平面直角坐標系中,△的頂點、在坐標軸上,點的坐標是(2,2).將△ABC沿軸向左平移得到△A1B1C1,點落在函數(shù)y=-.如果此時四邊形的面積等于,那么點的坐標是________.14.函數(shù)的圖象不經(jīng)過第__________象限.15.已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象與x軸交于(x1,0),且﹣1<x1<0,對稱軸x=1.如圖所示,有下列5個結(jié)論:①abc>0;②b<a+c;③4a+2b+c>0;④2c<3b;⑤a+b>m(am+b)(m≠1的實數(shù)).其中所有結(jié)論正確的是______(填寫番號).16.如圖,點G是△ABC的重心,CG的延長線交AB于D,GA=5cm,GC=4cm,GB=3cm,將△ADG繞點D旋轉(zhuǎn)180°得到△BDE,△ABC的面積=_____cm1.17.一個n邊形的內(nèi)角和為1080°,則n=________.18.計算:(a2)2=_____.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)如圖,某地方政府決定在相距50km的A、B兩站之間的公路旁E點,修建一個土特產(chǎn)加工基地,且使C、D兩村到E點的距離相等,已知DA⊥AB于A,CB⊥AB于B,DA=30km,CB=20km,那么基地E應建在離A站多少千米的地方?20.(6分)如圖,足球場上守門員在處開出一高球,球從離地面1米的處飛出(在軸上),運動員乙在距點6米的處發(fā)現(xiàn)球在自己頭的正上方達到最高點,距地面約4米高,球落地后又一次彈起.據(jù)實驗測算,足球在草坪上彈起后的拋物線與原來的拋物線形狀相同,最大高度減少到原來最大高度的一半.求足球開始飛出到第一次落地時,該拋物線的表達式.足球第一次落地點距守門員多少米?(?。┻\動員乙要搶到第二個落點,他應再向前跑多少米?21.(6分)已知拋物線y=a(x+3)(x﹣1)(a≠0),與x軸從左至右依次相交于A、B兩點,與y軸相交于點C,經(jīng)過點A的直線y=﹣3x+b與拋物線的另一個交點為D.(1)若點D的橫坐標為2,求拋物線的函數(shù)解析式;(2)若在第三象限內(nèi)的拋物線上有點P,使得以A、B、P為頂點的三角形與△ABC相似,求點P的坐標;(3)在(1)的條件下,設點E是線段AD上的一點(不含端點),連接BE.一動點Q從點B出發(fā),沿線段BE以每秒1個單位的速度運動到點E,再沿線段ED以每秒2322.(8分)解方程:=1.23.(8分)如圖,點A、B在⊙O上,點O是⊙O的圓心,請你只用無刻度的直尺,分別畫出圖①和圖②中∠A的余角.(1)圖①中,點C在⊙O上;(2)圖②中,點C在⊙O內(nèi);24.(10分)如圖,半圓D的直徑AB=4,線段OA=7,O為原點,點B在數(shù)軸的正半軸上運動,點B在數(shù)軸上所表示的數(shù)為m.當半圓D與數(shù)軸相切時,m=.半圓D與數(shù)軸有兩個公共點,設另一個公共點是C.①直接寫出m的取值范圍是.②當BC=2時,求△AOB與半圓D的公共部分的面積.當△AOB的內(nèi)心、外心與某一個頂點在同一條直線上時,求tan∠AOB的值.25.(10分)已知:如圖,平行四邊形ABCD,對角線AC與BD相交于點E,點G為AD的中點,連接CG,CG的延長線交BA的延長線于點F,連接FD.求證:AB=AF;若AG=AB,∠BCD=120°,判斷四邊形ACDF的形狀,并證明你的結(jié)論.26.(12分)我市某中學舉行“中國夢?校園好聲音”歌手大賽,高、初中部根據(jù)初賽成績,各選出5名選手組成初中代表隊和高中代表隊參加學校決賽.兩個隊各選出的5名選手的決賽成績?nèi)鐖D所示.根據(jù)圖示填寫下表;

平均數(shù)(分)

中位數(shù)(分)

眾數(shù)(分)

初中部

85

高中部

85

100

(2)結(jié)合兩隊成績的平均數(shù)和中位數(shù),分析哪個隊的決賽成績較好;計算兩隊決賽成績的方差并判斷哪一個代表隊選手成績較為穩(wěn)定.27.(12分)(1)計算:﹣2sin45°+(2﹣π)0﹣()﹣1;(2)先化簡,再求值?(a2﹣b2),其中a=,b=﹣2.

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、B【解析】

根據(jù)拋物線的對稱軸即可判定①;觀察圖象可得,當x=-3時,y<0,由此即可判定②;觀察圖象可得,當x=1時,y>0,由此即可判定③;觀察圖象可得,當x>2時,y的值隨x值的增大而增大,即可判定④.【詳解】由拋物線的對稱軸為x=2可得-b觀察圖象可得,當x=-3時,y<0,即9a-3b+c<0,所以a+c<觀察圖象可得,當x=1時,y>0,即a+b+c>0,③正確;觀察圖象可得,當x>2時,y的值隨x值的增大而增大,④錯誤.綜上,正確的結(jié)論有2個.故選B.【點睛】本題考查了二次函數(shù)圖象與系數(shù)的關系:二次函數(shù)y=ax2+bx+c(a≠0),二次項系數(shù)a決定拋物線的開口方向和大小,當a>0時,拋物線向上開口;當a<0時,拋物線向下開口;一次項系數(shù)b和二次項系數(shù)a共同決定對稱軸的位置,當a與b同號時(即ab>0),對稱軸在y軸左;當a與b異號時(即ab<0),對稱軸在y軸右;常數(shù)項c決定拋物線與y軸交點.拋物線與y軸交于(0,c);拋物線與x軸交點個數(shù)由△決定,△=b2-4ac>0時,拋物線與x軸有2個交點;△=b2-4ac=0時,拋物線與x軸有1個交點;△=b2-4ac<0時,拋物線與x軸沒有交點.2、C【解析】

根據(jù)平行線分線段成比例定理找準線段的對應關系,對各選項分析判斷后利用排除法求解.【詳解】解:∵DE∥BC,∴=,BD≠BC,∴≠,選項A不正確;∵DE∥BC,EF∥AB,∴=,EF=BD,=,∵≠,∴≠,選項B不正確;∵EF∥AB,∴=,選項C正確;∵DE∥BC,EF∥AB,∴=,=,CE≠AE,∴≠,選項D不正確;故選C.【點睛】本題考查了平行線分線段成比例定理;熟練掌握平行線分線段成比例定理,在解答時尋找對應線段是關?。?、D【解析】

根據(jù)三視圖知該幾何體是一個半徑為2、高為4的圓柱體的縱向一半,據(jù)此求解可得.【詳解】該幾何體的表面積為2×?π?22+4×4+×2π?2×4=12π+16,故選:D.【點睛】本題主要考查由三視圖判斷幾何體,解題的關鍵是根據(jù)三視圖得出幾何體的形狀及圓柱體的有關計算.4、C【解析】

圖中,線段GH和EF將大平行四邊形ABCD分割成了四個小平行四邊形,平行四邊形的對角線平分該平行四邊形的面積,據(jù)此進行解答即可.【詳解】解:由已知得題圖中幾個四邊形均是平行四邊形.又因為平行四邊形的一條對角線將平行四邊形分成兩個全等的三角形,即面積相等,故紅花和綠花種植面積一樣大,藍花和黃花種植面積一樣大,紫花和橙花種植面積一樣大.故選擇C.【點睛】本題考查了平行四邊形的定義以及性質(zhì),知道對角線平分平行四邊形是解題關鍵.5、C【解析】

連接AD,由于△ABC是等腰三角形,點D是BC邊的中點,故AD⊥BC,再根據(jù)三角形的面積公式求出AD的長,再根據(jù)EF是線段AB的垂直平分線可知,點B關于直線EF的對稱點為點A,故AD的長為BM+MD的最小值,由此即可得出結(jié)論.【詳解】如圖,連接AD.∵△ABC是等腰三角形,點D是BC邊的中點,∴AD⊥BC,∴S△ABC=BC?AD=×4×AD=12,解得:AD=6(cm).∵EF是線段AB的垂直平分線,∴點B關于直線EF的對稱點為點A,∴AD的長為BM+MD的最小值,∴△BDM的周長最短=(BM+MD)+BD=AD+BC=6+×4=6+2=8(cm).故選C.【點睛】本題考查的是軸對稱﹣最短路線問題,熟知等腰三角形三線合一的性質(zhì)是解答此題的關鍵.6、C【解析】

畫樹狀圖求出共有12種等可能結(jié)果,符合題意得有2種,從而求解.【詳解】解:畫樹狀圖得:∵共有12種等可能的結(jié)果,兩次都摸到白球的有2種情況,∴兩次都摸到白球的概率是:.故答案為C.【點睛】本題考查畫樹狀圖求概率,掌握樹狀圖的畫法準確求出所有的等可能結(jié)果及符合題意的結(jié)果是本題的解題關鍵.7、D【解析】

根據(jù)多邊形的外角和是360°,以及多邊形的內(nèi)角和定理即可求解.【詳解】設多邊形的邊數(shù)是n,則(n?2)?180=3×360,解得:n=8.故選D.【點睛】此題考查多邊形內(nèi)角與外角,解題關鍵在于掌握其定理.8、B【解析】

由矩形和菱形的判定方法得出A、C、D正確,B不正確;即可得出結(jié)論.【詳解】解:A、若AB⊥BC,則是矩形,正確;B、若,則是正方形,不正確;C、若,則是矩形,正確;D、若,則是菱形,正確;故選B.【點睛】本題考查了正方形的判定、矩形的判定、菱形的判定;熟練掌握正方形的判定、矩形的判定、菱形的判定是解題的關鍵.9、A【解析】

延長A1A、B1B和C1C,從而得到P點位置,從而可得到P點坐標.【詳解】如圖,點P的坐標為(-4,-3).

故選A.【點睛】本題考查了位似變換:如果兩個圖形不僅是相似圖形,而且對應頂點的連線相交于一點,對應邊互相平行,那么這樣的兩個圖形叫做位似圖形,這個點叫做位似中心.10、C【解析】

分析:先求出每個數(shù)的范圍,逐一分析得出選項.詳解:A、3<π<4,故本選項不符合題意;

B、1<π?2<2,故本選項不符合題意;

C、2<<3,故本選項符合題意;

D、3<<4,故本選項不符合題意;故選C.點睛:本題考查了估算無理數(shù)的大小,能估算出每個數(shù)的范圍是解本題的關鍵.11、C【解析】

找中位數(shù)要把數(shù)據(jù)按從小到大的順序排列,位于最中間的一個數(shù)(或兩個數(shù)的平均數(shù))為中位數(shù);眾數(shù)是一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù)據(jù),注意眾數(shù)可以不只一個.【詳解】從小到大排列此數(shù)據(jù)為:40,1,1,1,42,44,45,數(shù)據(jù)1出現(xiàn)了三次最多為眾數(shù),1處在第4位為中位數(shù).所以本題這組數(shù)據(jù)的中位數(shù)是1,眾數(shù)是1.故選C.【點睛】考查了確定一組數(shù)據(jù)的中位數(shù)和眾數(shù)的能力.一些學生往往對這個概念掌握不清楚,計算方法不明確而誤選其它選項.注意找中位數(shù)的時候一定要先排好順序,然后再根據(jù)奇數(shù)和偶數(shù)個來確定中位數(shù),如果數(shù)據(jù)有奇數(shù)個,則正中間的數(shù)字即為所求.如果是偶數(shù)個則找中間兩位數(shù)的平均數(shù).12、B【解析】

解:去分母得:x+m﹣3m=3x﹣9,整理得:2x=﹣2m+9,解得:x=,已知關于x的方程=3的解為正數(shù),所以﹣2m+9>0,解得m<,當x=3時,x==3,解得:m=,所以m的取值范圍是:m<且m≠.故答案選B.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、(-5,)【解析】分析:依據(jù)點B的坐標是(2,2),BB2∥AA2,可得點B2的縱坐標為2,再根據(jù)點B2落在函數(shù)y=﹣的圖象上,即可得到BB2=AA2=5=CC2,依據(jù)四邊形AA2C2C的面積等于,可得OC=,進而得到點C2的坐標是(﹣5,).詳解:如圖,∵點B的坐標是(2,2),BB2∥AA2,∴點B2的縱坐標為2.又∵點B2落在函數(shù)y=﹣的圖象上,∴當y=2時,x=﹣3,∴BB2=AA2=5=CC2.又∵四邊形AA2C2C的面積等于,∴AA2×OC=,∴OC=,∴點C2的坐標是(﹣5,).故答案為(﹣5,).點睛:本題主要考查了反比例函數(shù)的綜合題的知識,解答本題的關鍵是熟練掌握反比例函數(shù)的性質(zhì)以及平移的性質(zhì).在平面直角坐標系內(nèi),把一個圖形各個點的橫坐標都加上(或減去)一個整數(shù)a,相應的新圖形就是把原圖形向右(或向左)平移a個單位長度.14、三.【解析】

先根據(jù)一次函數(shù)判斷出函數(shù)圖象經(jīng)過的象限,進而可得出結(jié)論.【詳解】解:∵一次函數(shù)中,此函數(shù)的圖象經(jīng)過一、二、四象限,不經(jīng)過第三象限,故答案為:三.【點睛】本題考查的是一次函數(shù)的性質(zhì),即一次函數(shù)中,當,時,函數(shù)圖象經(jīng)過一、二、四象限.15、③④⑤【解析】

根據(jù)函數(shù)圖象和二次函數(shù)的性質(zhì)可以判斷題目中各個小題的結(jié)論是否成立,從而可以解答本題.【詳解】解:由圖象可得,拋物線開口向下,則a<0,拋物線與y軸交于正半軸,則c>0,對稱軸在y軸右側(cè),則與a的符號相反,故b>0.

∴a<0,b>0,c>0,

∴abc<0,故①錯誤,

當x=-1時,y=a-b+c<0,得b>a+c,故②錯誤,

∵二次函數(shù)y=ax2+bx+c(a≠0)的圖象與x軸交于(x1,0),且-1<x1<0,對稱軸x=1,

∴x=2時的函數(shù)值與x=0的函數(shù)值相等,

∴x=2時,y=4a+2b+c>0,故③正確,

∵x=-1時,y=a-b+c<0,-=1,

∴2a-2b+2c<0,b=-2a,

∴-b-2b+2c<0,

∴2c<3b,故④正確,

由圖象可知,x=1時,y取得最大值,此時y=a+b+c,

∴a+b+c>am2+bm+c(m≠1),

∴a+b>am2+bm

∴a+b>m(am+b),故⑤正確,

故答案為:③④⑤.【點睛】本題考查二次函數(shù)圖象與系數(shù)的關系、拋物線與x軸的交點坐標,解答本題的關鍵是明確題意,利用二次函數(shù)的性質(zhì)和數(shù)形結(jié)合的思想解答.16、18【解析】

三角形的重心是三條中線的交點,根據(jù)中線的性質(zhì),S△ACD=S△BCD;再利用勾股定理逆定理證明BG⊥CE,從而得出△BCD的高,可求△BCD的面積.【詳解】∵點G是△ABC的重心,∴∵GB=3,EG=GC=4,BE=GA=5,∴,即BG⊥CE,∵CD為△ABC的中線,∴∴故答案為:18.【點睛】考查三角形重心的性質(zhì),中線的性質(zhì),旋轉(zhuǎn)的性質(zhì),勾股定理逆定理等,綜合性比較強,對學生要求較高.17、1【解析】

直接根據(jù)內(nèi)角和公式計算即可求解.【詳解】(n﹣2)?110°=1010°,解得n=1.故答案為1.【點睛】主要考查了多邊形的內(nèi)角和公式.多邊形內(nèi)角和公式:.18、a1.【解析】

根據(jù)冪的乘方法則進行計算即可.【詳解】故答案為【點睛】考查冪的乘方,掌握運算法則是解題的關鍵.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、20千米【解析】

由勾股定理兩直角邊的平方和等于斜邊的平方即可求,即在直角三角形DAE和直角三角形CBE中利用斜邊相等兩次利用勾股定理得到AD2+AE2=BE2+BC2,設AE為x,則BE=10﹣x,將DA=8,CB=2代入關系式即可求得.【詳解】解:設基地E應建在離A站x千米的地方.則BE=(50﹣x)千米在Rt△ADE中,根據(jù)勾股定理得:AD2+AE2=DE2∴302+x2=DE2在Rt△CBE中,根據(jù)勾股定理得:CB2+BE2=CE2∴202+(50﹣x)2=CE2又∵C、D兩村到E點的距離相等.∴DE=CE∴DE2=CE2∴302+x2=202+(50﹣x)2解得x=20∴基地E應建在離A站20千米的地方.考點:勾股定理的應用.20、(1)(或)(2)足球第一次落地距守門員約13米.(3)他應再向前跑17米.【解析】

(1)依題意代入x的值可得拋物線的表達式.(2)令y=0可求出x的兩個值,再按實際情況篩選.(3)本題有多種解法.如圖可得第二次足球彈出后的距離為CD,相當于將拋物線AEMFC向下平移了2個單位可得解得x的值即可知道CD、BD.【詳解】解:(1)如圖,設第一次落地時,拋物線的表達式為由已知:當時即表達式為(或)(2)令(舍去).足球第一次落地距守門員約13米.(3)解法一:如圖,第二次足球彈出后的距離為根據(jù)題意:(即相當于將拋物線向下平移了2個單位)解得(米).答:他應再向前跑17米.21、(1)y=﹣3(x+3)(x﹣1)=﹣3x2﹣23x+33;(2)(﹣4,﹣153)和(﹣6,﹣37)(3)(1,﹣43【解析】試題分析:(1)根據(jù)二次函數(shù)的交點式確定點A、B的坐標,求出直線的解析式,求出點D的坐標,求出拋物線的解析式;(2)作PH⊥x軸于H,設點P的坐標為(m,n),分△BPA∽△ABC和△PBA∽△ABC,根據(jù)相似三角形的性質(zhì)計算即可;(3)作DM∥x軸交拋物線于M,作DN⊥x軸于N,作EF⊥DM于F,根據(jù)正切的定義求出Q的運動時間t=BE+EF時,t最小即可.試題解析:(1)∵y=a(x+3)(x﹣1),∴點A的坐標為(﹣3,0)、點B兩的坐標為(1,0),∵直線y=﹣x+b經(jīng)過點A,∴b=﹣3,∴y=﹣x﹣3,當x=2時,y=﹣5,則點D的坐標為(2,﹣5),∵點D在拋物線上,∴a(2+3)(2﹣1)=﹣5,解得,a=﹣,則拋物線的解析式為y=﹣(x+3)(x﹣1)=﹣x2﹣2x+3;(2)作PH⊥x軸于H,設點P的坐標為(m,n),當△BPA∽△ABC時,∠BAC=∠PBA,∴tan∠BAC=tan∠PBA,即=,∴=,即n=﹣a(m﹣1),∴,解得,m1=﹣4,m2=1(不合題意,舍去),當m=﹣4時,n=5a,∵△BPA∽△ABC,∴=,即AB2=AC?PB,∴42=?,解得,a1=(不合題意,舍去),a2=﹣,則n=5a=﹣,∴點P的坐標為(﹣4,﹣);當△PBA∽△ABC時,∠CBA=∠PBA,∴tan∠CBA=tan∠PBA,即=,∴=,即n=﹣3a(m﹣1),∴,解得,m1=﹣6,m2=1(不合題意,舍去),當m=﹣6時,n=21a,∵△PBA∽△ABC,∴=,即AB2=BC?PB,∴42=?,解得,a1=(不合題意,舍去),a2=﹣,則點P的坐標為(﹣6,﹣),綜上所述,符合條件的點P的坐標為(﹣4,﹣)和(﹣6,﹣);(3)作DM∥x軸交拋物線于M,作DN⊥x軸于N,作EF⊥DM于F,則tan∠DAN===,∴∠DAN=60°,∴∠EDF=60°,∴DE==EF,∴Q的運動時間t=+=BE+EF,∴當BE和EF共線時,t最小,則BE⊥DM,E(1,﹣4).考點:二次函數(shù)綜合題.22、x=1【解析】

方程兩邊同乘轉(zhuǎn)化為整式方程,解整式方程后進行檢驗即可得.【詳解】解:方程兩邊同乘得:,整理,得,解這個方程得,,經(jīng)檢驗,是增根,舍去,所以,原方程的根是.【點睛】本題考查了解分式方程,解分式方程的關鍵是方程兩邊同乘分母的最簡公分母化為整式方程然后求解,注意要進行檢驗.23、圖形見解析【解析】試題分析:(1)根據(jù)同弧所對的圓周角相等和直徑所對的圓周角為直角畫圖即可;(2)延長AC交⊙O于點E,利用(1)的方法畫圖即可.試題解析:如圖①∠DBC就是所求的角;如圖②∠FBE就是所求的角24、(1);(2)①;②△AOB與半圓D的公共部分的面積為;(3)tan∠AOB的值為或.【解析】

(1)根據(jù)題意由勾股定理即可解答(2)①根據(jù)題意可知半圓D與數(shù)軸相切時,只有一個公共點,和當O、A、B三點在數(shù)軸上時,求出兩種情況m的值即可②如圖,連接DC,得出△BCD為等邊三角形,可求出扇形ADC的面積,即可解答(3)根據(jù)題意如圖1,當OB=AB時,內(nèi)心、外心與頂點B在同一條直線上,作AH⊥OB于點H,設BH=x,列出方程求解即可解答如圖2,當OB=OA時,內(nèi)心、外心與頂點O在同一條直線上,作AH⊥OB于點H,設BH=x,列出方程求解即可解答【詳解】(1)當半圓與數(shù)軸相切時,AB⊥OB,由勾股定理得m=,故答案為.(2)①∵半圓D與數(shù)軸相切時,只有一個公共點,此時m=,當O、A、B三點在數(shù)軸上時,m=7+4=11,∴半圓D與數(shù)軸有兩個公共點時,m的取值范圍為.故答案為.②如圖,連接DC,當BC=2時,∵BC=CD=BD=2,∴△BCD為等邊三角形,∴∠BDC=60°,∴∠ADC=120°,∴扇形ADC的面積為,,∴△AOB與半圓D的公共部分的面積為;(3)如圖1,當OB=AB時,內(nèi)心、外心與頂點B在同一條直線上,作AH⊥OB于點H,設BH=x,則72﹣(4+x)2=42﹣x2,解得x=,OH=,AH=,∴tan∠AOB=,如圖2,當OB=OA時,內(nèi)心、外心與頂點O在同一條直線上,作AH⊥OB于點H,設BH=x,則72﹣(4﹣x)2=42﹣x2,解得x=,OH=,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論