版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
安徽省蚌埠市禹會區(qū)2025屆九年級數學第一學期期末教學質量檢測模擬試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題(每題4分,共48分)1.拋物線的項點坐標是()A. B. C. D.2.若關于x的方程(m﹣1)x2+mx﹣1=0是一元二次方程,則m的取值范圍是()A.m≠1 B.m=1 C.m≥1 D.m≠03.在學校組織的實踐活動中,小新同學用紙板制作了一個圓錐模型,它的底面半徑為1,母線長為1.則這個圓錐的側面積是()A.4π B.1π C.π D.2π4.如圖,已知直線y=x與雙曲線y=(k>0)交于A、B兩點,A點的橫坐標為3,則下列結論:①k=6;②A點與B點關于原點O中心對稱;③關于x的不等式<0的解集為x<﹣3或0<x<3;④若雙曲線y=(k>0)上有一點C的縱坐標為6,則△AOC的面積為8,其中正確結論的個數()A.4個 B.3個 C.2個 D.1個5.“射擊運動員射擊一次,命中靶心”這個事件是()A.確定事件B.必然事件C.不可能事件D.不確定事件6.書架上放著三本古典名著和兩本外國小說,小明從中隨機抽取兩本,兩本都是古典名著的概率是()A. B. C. D.7.如圖,AB為⊙O的直徑,四邊形ABCD為⊙O的內接四邊形,點P在BA的延長線上,PD與⊙O相切,D為切點,若∠BCD=125°,則∠ADP的大小為()A.25° B.40° C.35° D.30°8.如圖,在?ABCD中,若∠A+∠C=130°,則∠D的大小為()A.100° B.105° C.110° D.115°9.如圖,在平面直角坐標系中,直線AB與x軸,y軸分別交于A,B,與反比例函數(k>0)在第一象限的圖象交于點E,F,過點E作EM⊥y軸于M,過點F作FN⊥x軸于N,直線EM與FN交于點C,若,則△OEF與△CEF的面積之比是()A.2:1 B.3:1 C.2:3 D.3:210.如圖所示,在邊長為1的小正方形網格中,兩個三角形是位似圖形,則它們的位似中心是()A.點O B.點P C.點M D.點N11.兩三角形的相似比是2:3,則其面積之比是()A.: B.2:3 C.4:9 D.8:2712.如圖,A、B、C是小正方形的頂點,且每個小正方形的邊長為1,則tan∠BAC的值為()A. B.1 C. D.二、填空題(每題4分,共24分)13.如圖,在Rt△ABC中,∠ACB=90°,CB=4,以點C為圓心,CB的長為半徑畫弧,與AB邊交于點D,將繞點D旋轉180°后點B與點A恰好重合,則圖中陰影部分的面積為_____.14.已知中,,,,則的長為__________.15.為了某小區(qū)居民的用水情況,隨機抽查了10戶家庭的月用水量,結果如下表:月用水量(噸)
4
5
6
9
戶數
3
4
2
1
則關于這10戶家庭的約用水量,下列說法錯誤的是()A.中位數是5噸 B.極差是3噸 C.平均數是5.3噸 D.眾數是5噸16.如圖,在平面直角坐標系中,直線l:與坐標軸分別交于A,B兩點,點C在x正半軸上,且OC=OB.點P為線段AB(不含端點)上一動點,將線段OP繞點O順時針旋轉90°得線段OQ,連接CQ,則線段CQ的最小值為___________.17.如圖,某校教學樓AC與實驗樓BD的水平間距CD=30m,在教學樓AC的底部C點測實驗樓頂部B點的仰角為α,且sinα=,在實驗樓頂部B點測得教學樓頂部A點的仰角是30°,則教學樓AC的高度是_____m(結果保留根號).18.某盞路燈照射的空間可以看成如圖所示的圓錐,它的高AO=8米,母線AB=10米,則該圓錐的側面積是_____平方米(結果保留π).三、解答題(共78分)19.(8分)某次數學競賽共有3道判斷題,認為正確的寫“”,錯誤的寫“”,小明在做判斷題時,每道題都在“”或“”中隨機寫了一個.(1)小明做對第1題的概率是;(2)求小明這3道題全做對的概率.20.(8分)如圖,在平面直角坐標系中,拋物線y=ax2+bx+6經過點A(﹣3,0)和點B(2,0),直線y=h(h為常數,且0<h<6)與BC交于點D,與y軸交于點E,與AC交于點F.(1)求拋物線的解析式;(2)連接AE,求h為何值時,△AEF的面積最大.(3)已知一定點M(﹣2,0),問:是否存在這樣的直線y=h,使△BDM是等腰三角形?若存在,請求出h的值和點D的坐標;若不存在,請說明理由.21.(8分)計算:sin45°+2cos30°﹣tan60°22.(10分)鄂州市化工材料經銷公司購進一種化工原料若干千克,價格為每千克30元.物價部門規(guī)定其銷售單價不高于每千克60元,不低于每千克30元.經市場調查發(fā)現:日銷售量y(千克)是銷售單價x(元)的一次函數,且當x=60時,y=80;x=50時,y=1.在銷售過程中,每天還要支付其他費用450元.(1)求出y與x的函數關系式,并寫出自變量x的取值范圍.(2)求該公司銷售該原料日獲利w(元)與銷售單價x(元)之間的函數關系式.(3)當銷售單價為多少元時,該公司日獲利最大?最大獲利是多少元?23.(10分)如圖,拋物線y=﹣x2+bx+c與x軸負半軸交于點A,正半軸交于點B,OA=2OB=1.求拋物線的頂點坐標.24.(10分)文具店有三種品牌的6個筆記本,價格是4,5,7(單位:元)三種,從中隨機拿出一個本,已知(一次拿到7元本).(1)求這6個本價格的眾數.(2)若琪琪已拿走一個7元本,嘉嘉準備從剩余5個本中隨機拿一個本.①所剩的5個本價格的中位數與原來6個本價格的中位數是否相同?并簡要說明理由;②嘉嘉先隨機拿出一個本后不放回,之后又隨機從剩余的本中拿一個本,用列表法求嘉嘉兩次都拿到7元本的概率.25.(12分)如圖,直線y=1x+1與y軸交于A點,與反比例函數y=(x>0)的圖象交于點M,過M作MH⊥x軸于點H,且tan∠AHO=1.(1)求H點的坐標及k的值;(1)點P在y軸上,使△AMP是以AM為腰的等腰三角形,請直接寫出所有滿足條件的P點坐標;(3)點N(a,1)是反比例函數y=(x>0)圖象上的點,點Q(m,0)是x軸上的動點,當△MNQ的面積為3時,請求出所有滿足條件的m的值.26.(2016山東省聊城市)如圖,在直角坐標系中,直線與反比例函數的圖象交于關于原點對稱的A,B兩點,已知A點的縱坐標是1.(1)求反比例函數的表達式;(2)將直線向上平移后與反比例函數在第二象限內交于點C,如果△ABC的面積為48,求平移后的直線的函數表達式.
參考答案一、選擇題(每題4分,共48分)1、D【分析】由二次函數頂點式:,得出頂點坐標為,根據這個知識點即可得出此二次函數的頂點坐標.【詳解】解:由題知:拋物線的頂點坐標為:故選:D.【點睛】本題主要考查的二次函數的頂點式的特點以及頂點坐標的求法,掌握二次函數的頂點式是解題的關鍵.2、A【分析】根據一元二次方程的定義可得m﹣1≠0,再解即可.【詳解】解:由題意得:m﹣1≠0,解得:m≠1,故選:A.【點睛】本題考查了一元二次方程的定義,注意掌握只含有一個未知數,并且未知數的最高次數是2的整式方程叫一元二次方程.3、B【分析】根據圓錐的側面積,代入數進行計算即可.【詳解】解:圓錐的側面積2π×1×1=1π.故選:B.【點睛】本題主要考查了圓錐的計算,掌握圓錐的計算是解題的關鍵.4、A【分析】①由A點橫坐標為3,代入正比例函數,可求得點A的坐標,繼而求得k值;
②根據直線和雙曲線的性質即可判斷;
③結合圖象,即可求得關于x的不等式<0的解集;
④過點C作CD⊥x軸于點D,過點A作AE⊥軸于點E,可得S△AOC=S△OCD+S梯形AEDC-S△AOE=S梯形AEDC,由點C的縱坐標為6,可求得點C的坐標,繼而求得答案.【詳解】①∵直線y=x與雙曲線y=(k>0)交于A、B兩點,A點的橫坐標為3,∴點A的縱坐標為:y=×3=2,∴點A(3,2),∴k=3×2=6,故①正確;②∵直線y=x與雙曲線y=(k>0)是中心對稱圖形,∴A點與B點關于原點O中心對稱,故②正確;③∵直線y=x與雙曲線y=(k>0)交于A、B兩點,∴B(﹣3,﹣2),∴關于x的不等式<0的解集為:x<﹣3或0<x<3,故③正確;④過點C作CD⊥x軸于點D,過點A作AE⊥x軸于點E,∵點C的縱坐標為6,∴把y=6代入y=得:x=1,∴點C(1,6),∴S△AOC=S△OCD+S梯形AEDC﹣S△AOE=S梯形AEDC=×(2+6)×(3﹣1)=8,故④正確;故選:A.【點睛】此題考查了反比例函數的性質、待定系數法求函數的解析式以及一次函數的性質等知識.此題難度較大,綜合性很強,注意掌握數形結合思想的應用.5、D【解析】試題分析:“射擊運動員射擊一次,命中靶心”這個事件是隨機事件,屬于不確定事件,故選D.考點:隨機事件.6、C【分析】畫樹狀圖(用A、B、C表示三本古典名著,a、b表示兩本外國小說)展示所有20種等可能的結果數,找出從中隨機抽取2本都是古典名著的結果數,然后根據概率公式求解.【詳解】解:畫樹狀圖為:(用A、B、C表示三本古典名著,a、b表示兩本外國小說),共有20種等可能的結果數,其中從中隨機抽取2本都是古典名著的結果數為6,所以從中隨機抽取2本都是古典名著的概率=.故選:C.【點睛】本題考查了樹狀圖法或列表法求概率,解題的關鍵是正確畫出樹狀圖或表格,然后用符合條件的情況數m除以所有等可能發(fā)生的情況數n即可,即.7、C【分析】連接AC,OD,根據直徑所對的圓周角是直角得到∠ACB是直角,求出∠ACD的度數,根據圓周角定理求出∠AOD的度數,再利用切線的性質即可得到∠ADP的度數.【詳解】連接AC,OD.∵AB是直徑,∴∠ACB=90°,∴∠ACD=125°﹣90°=35°,∴∠AOD=2∠ACD=70°.∵OA=OD,∴∠OAD=∠ADO,∴∠ADO=55°.∵PD與⊙O相切,∴OD⊥PD,∴∠ADP=90°﹣∠ADO=90°﹣55°=35°.故選:C.【點睛】本題考查了切線的性質、圓周角定理及推論,正確作出輔助線是解答本題的關鍵.8、D【解析】根據平行四邊形對角相等,鄰角互補即可求解.【詳解】解:在?ABCD中,∠A=∠C,∠A+∠D=180°,∵∠A+∠C=130°,∴∠A=∠C=65°,∴∠D=115°,故選D.【點睛】本題考查了平行四邊形的性質,屬于簡單題,熟悉平行四邊形的性質是解題關鍵.9、A【分析】根據E,F都在反比例函數的圖象上設出E,F的坐標,進而分別得出△CEF的面積以及△OEF的面積,然后即可得出答案.【詳解】解:設△CEF的面積為S1,△OEF的面積為S2,過點F作FG⊥BO于點G,EH⊥AO于點H,∴GF∥MC,∴=,∵ME?EH=FN?GF,∴==,設E點坐標為:(x,),則F點坐標為:(3x,),∴S△CEF=(3x﹣x)(﹣)=,∵S△OEF=S梯形EHNF+S△EOH﹣S△FON=S梯形EHNF=(+)(3x﹣x)=k∴==.故選:A.【點睛】此題主要考查了反比例函數的綜合應用以及三角形面積求法,根據已知表示出E,F的點坐標是解題關鍵,有一定難度,要求同學們能將所學的知識融會貫通.10、B【分析】根據位似變換的定義:對應點的連線交于一點,交點就是位似中心.即位似中心一定在對應點的連線上.【詳解】解:位似圖形的位似中心位于對應點連線所在的直線上,點M、N為對應點,所以位似中心(如圖)在M、N所在的直線上,點P在直線MN上,所以點P為位似中心.
故選:B.【點睛】此題主要考查了位似變換的性質,利用位似圖形的位似中心位于對應點連線所在的直線上,點M、N為對應點,得出位似中心在M、N所在的直線上是解題關鍵.11、C【解析】根據相似三角形的面積比等于相似比的平方計算即可.【詳解】∵兩三角形的相似比是2:3,∴其面積之比是4:9,故選C.【點睛】本題考查了相似三角形的性質,熟練掌握相似三角形的面積比等于相似比的平方是解題的關鍵.12、B【分析】連接BC,由網格求出AB,BC,AC的長,利用勾股定理的逆定理得到△ABC為等腰直角三角形,即可求出所求.【詳解】如圖,連接BC,由網格可得AB=BC=,AC=,即AB2+BC2=AC2,∴△ABC為等腰直角三角形,∴∠BAC=45°,則tan∠BAC=1,故選B.【點睛】本題考查了銳角三角函數的定義,解直角三角形,以及勾股定理,熟練掌握勾股定理是解本題的關鍵.二、填空題(每題4分,共24分)13、.【分析】根據題意,用的面積減去扇形的面積,即為所求.【詳解】由題意可得,AB=2BC,∠ACB=90°,弓形BD與弓形AD完全一樣,則∠A=30°,∠B=∠BCD=60°,∵CB=4,∴AB=8,AC=4,∴陰影部分的面積為:=,故答案為:.【點睛】本題考查不規(guī)則圖形面積的求法,屬中檔題.14、5或1【分析】作交BC于D,分兩種情況:①D在線段BC上;②D在線段BC的延長線上,根據銳角三角函數值和勾股定理求解即可.【詳解】作交BC于D①D在線段BC上,如圖∵∴∴,在Rt△ACD中,由勾股定理得∴②D在線段BC的延長線上,如圖∵∴∴,在Rt△ACD中,由勾股定理得∴故答案為:5或1.【點睛】本題考查了解三角形的問題,掌握銳角的三角函數以及勾股定理是解題的關鍵.15、B【詳解】解∵這10個數據是:4,4,4,5,5,5,5,6,6,9;∴中位數是:(5+5)÷2=5噸,故A正確;∴眾數是:5噸,故D正確;∴極差是:9﹣4=5噸,故B錯誤;∴平均數是:(3×4+4×5+2×6+9)÷10=5.3噸,故C正確.故選B.16、【分析】在OA上取使,得,則,根據點到直線的距離垂線段最短可知當⊥AB時,CP最小,由相似求出的最小值即可.【詳解】解:如圖,在OA上取使,∵,∴,在△和△QOC中,,∴△≌△QOC(SAS),∴∴當最小時,QC最小,過點作⊥AB,∵直線l:與坐標軸分別交于A,B兩點,∴A坐標為:(0,8);B點(-4,0),∵,∴,.∵,∴,∴,∴線段CQ的最小值為.故答案為:.【點睛】本題主要考查了一次函數圖像與坐標軸的交點及三角形全等的判定和性質、垂線段最短等知識,解題的關鍵是正確尋找全等三角形解決問題,學會利用垂線段最短解決最值問題,屬于中考壓軸題.17、(10+1)【分析】首先分析圖形,解直角三角形△BEC得出CE,再解直角三角形△ABE得出AE,進而即可求出答案.【詳解】解:過點B作BE⊥AB于點E,在Rt△BEC中,∠CBE=α,BE=CD=30;可得CE=BE×tanα,∵sinα=,∴tanα=,∴CE=30×=1.在Rt△ABE中,∠ABE=30°,BE=30,可得AE=BE×tan30°=10.故教學樓AC的高度是AC=(10+1)m.故答案為:(10+1)m.【點睛】本題考查了解直角三角形-俯角、仰角的定義,要求學生能借助俯角、仰角構造直角三角形并結合圖形利用三角函數解直角三角形.18、【分析】根據勾股定理求得OB,再求得圓錐的底面周長即圓錐的側面弧長,根據扇形面積的計算方法S=lr,求得答案即可.【詳解】解:∵AO=8米,AB=10米,∴OB=6米,∴圓錐的底面周長=2×π×6=12π米,∴S扇形=lr=×12π×10=60π米2,故答案為60π.【點睛】本題考查圓錐的側面積,掌握扇形面積的計算方法S=lr是解題的關鍵.三、解答題(共78分)19、(1);(2)【分析】(1)根據概率公式求概率即可;(2)寫出小明做這3道題,所有可能出現的等可能的結果,然后根據概率公式求概率即可.【詳解】解:(1)∵第一題可以寫A或B,共2種結果,其中作對的可能只有1種,∴小明做對第1題的概率是1÷2=故答案為;(2)小明做這3道題,所有可能出現的結果有:,,,,,,,,共有8種,它們出現的可能性相同,所有的結果中,滿足“這3道題全做對”(記為事件)的結果只有1種,∴小明這3道題全做對的概率為1÷8=.【點睛】此題考查的是求概率問題,掌握概率公式是解決此題的關鍵.20、(1)y=﹣x2﹣x+1;(2)當h=3時,△AEF的面積最大,最大面積是.(3)存在,當h=時,點D的坐標為(,);當h=時,點D的坐標為(,).【分析】(1)利用待定系數法即可解決問題.(2)由題意可得點E的坐標為(0,h),點F的坐標為(,h),根據S△AEF=?OE?FE=?h?=﹣(h﹣3)2+.利用二次函數的性質即可解決問題.(3)存在.分兩種情形情形,分別列出方程即可解決問題.【詳解】解:如圖:(1)∵拋物線y=ax2+bx+1經過點A(﹣3,0)和點B(2,0),∴,解得:.∴拋物線的解析式為y=﹣x2﹣x+1.(2)∵把x=0代入y=﹣x2﹣x+1,得y=1,∴點C的坐標為(0,1),設經過點A和點C的直線的解析式為y=mx+n,則,解得,∴經過點A和點C的直線的解析式為:y=2x+1,∵點E在直線y=h上,∴點E的坐標為(0,h),∴OE=h,∵點F在直線y=h上,∴點F的縱坐標為h,把y=h代入y=2x+1,得h=2x+1,解得x=,∴點F的坐標為(,h),∴EF=.∴S△AEF=?OE?FE=?h?=﹣(h﹣3)2+,∵﹣<0且0<h<1,∴當h=3時,△AEF的面積最大,最大面積是.(3)存在符合題意的直線y=h.∵B(2,0),C(0,1),∴直線BC的解析式為y=﹣3x+1,設D(m,﹣3m+1).①當BM=BD時,(m﹣2)2+(﹣3m+1)2=42,解得m=或(舍棄),∴D(,),此時h=.②當MD=BM時,(m+2)2+(﹣3m+1)2=42,解得m=或2(舍棄),∴D(,),此時h=.∵綜上所述,存在這樣的直線y=或y=,使△BDM是等腰三角形,當h=時,點D的坐標為(,);當h=時,點D的坐標為(,).【點睛】此題考查了待定系數法求函數的解析式、二次函數的性質、等腰三角形的性質、勾股定理一次函數的應用等知識,此題難度較大,注意掌握方程思想、分類討論思想與數形結合思想的應用.21、1【分析】根據特殊角的三角函數值計算即可求出值.【詳解】解:原式=×+2×﹣=1.【點睛】本題考查了特殊角的三角函數值、二次根式的運算,解決本題的關鍵是熟練掌握特殊角的銳角函數值.22、(1)y=-2x+200(30≤x≤60)(2)w=-2(x-65)2+2000);(3)當銷售單價為60元時,該公司日獲利最大,為1950元【分析】(1)設出一次函數解析式,把相應數值代入即可.(2)根據利潤計算公式列式即可;(3)進行配方求值即可.【詳解】(1)設y=kx+b,根據題意得解得:∴y=-2x+200(30≤x≤60)(2)W=(x-30)(-2x+200)-450=-2x2+260x-6450=-2(x-65)2+2000)(3)W=-2(x-65)2+2000∵30≤x≤60∴x=60時,w有最大值為1950元∴當銷售單價為60元時,該公司日獲利最大,為1950元考點:二次函數的應用.23、(﹣1,9)【分析】先寫出A、B點的坐標,然后利用交點式寫出拋物線解析式,再利用配方法得到拋物線的頂點坐標.【詳解】解:∵OA=2OB=1,∴B(2,0),A(﹣1,0),∴拋物線解析式為y=﹣(x+1)(x﹣2),即y=﹣x2﹣2x+8,∵y=﹣(x+1)2+9,∴拋物線的頂點坐標為(﹣1,9).【點睛】本題考查了二次函數的解析式,解決本題的關鍵是正確理解題意,能夠將二次函數一般式轉化為交點式.24、(1)眾數是7;(2)①相同;見詳解;②【分析】(1)由概率公式求出7元本的個數,由眾數的定義即可得出答案;
(2)①由中位數的定義即可得出答案;
②用列表法得出所有結果,嘉嘉兩次都拿到7元本的結果有6個,由概率公式即可得出答案.【詳解】解:(1)∵(一次拿到7元本),
∴7元本的個數為6×=4(個),按照從小到大的順序排列為4,5,7,7,7,7,
∴這6個本價格的眾數是7.(2)①相同;∵原來4、5、7、7、7、7,∴中位數為,5本價格為4、5、7、7、7,中位數為7,∴,∴相同.②見圖第一個第二個4577745777∴(兩次都為7).【點睛】本題考查了眾數、中位數以及列表法求概率;熟練掌握眾數、中位數的定義,列表得出所有結果是解題的關鍵.25、(1)k=4;(1)點P的坐標為(0,6)或(0,1+),或(0,1﹣);(2)m=7或2.【解析】(1)先求出OA=1,結合tan∠AHO=1可得OH的長,即可得知點M的橫坐標,代入直線解析式可得點M坐標,代入反比例解析式可得k的值;
(1)分AM=AP和AM=PM兩種情況分別求解可得;
(2)先求出點N(4,1),延長MN交x軸于點C,待定系數法求出直線MN解析式為y=-x+3.據此求得OC=3,再由S△MNQ=S△MQC-S△NQC=2知QC=1,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025廣東湛江市麻章區(qū)大學生鄉(xiāng)村醫(yī)生專項計劃招聘7人備考筆試題庫及答案解析
- 2026年中國林業(yè)集團有限公司校園招聘(廣東11人)模擬筆試試題及答案解析
- 2025江西吉安市泰和縣新睿人力資源服務有限公司面向社會招聘項目制人員5人模擬筆試試題及答案解析
- 2025遼寧沈陽盛京資產管理集團有限公司所屬子公司沈陽華海錕泰投資有限公司所屬子公司招聘5人參考考試題庫及答案解析
- 2025上海對外經貿大學公開招聘工作人員備考筆試題庫及答案解析
- 2025湖南衡陽市衡陽縣湘南船山高級技工學校招聘專業(yè)技術人員6人參考筆試題庫附答案解析
- 2026上海銀清企業(yè)服務有限公司招聘備考筆試試題及答案解析
- 2025浙江溫州甌海招商發(fā)展有限公司招聘1人備考筆試題庫及答案解析
- 2025安徽皖新融資租賃有限公司服務人員招聘崗位核減備考筆試題庫及答案解析
- 2025年河南輕工職業(yè)學院招聘工作人員(博士)5名備考考試試題及答案解析
- 招投標自查自糾報告
- 高校公寓管理述職報告
- HG-T 20583-2020 鋼制化工容器結構設計規(guī)范
- 單位職工健康體檢總結報告
- 有序則安之現場定置管理技術
- V型濾池設計計算書2021
- 醫(yī)院護理培訓課件:《老年患者靜脈輸液的治療與護理》
- 安全用電防止觸電主題教育PPT模板
- LY/T 1690-2017低效林改造技術規(guī)程
- 通信工程設計基礎doc資料
- 流體機械原理:05第四章 泵的汽蝕
評論
0/150
提交評論