版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2022-2023學年九上數(shù)學期末模擬試卷注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題(每題4分,共48分)1.二次函數(shù)(b>0)與反比例函數(shù)在同一坐標系中的圖象可能是()A. B. C. D.2.如圖,在平面直角坐標系中,矩形OABC的兩邊OA,OC分別在x軸和y軸上,并且OA=5,OC=1.若把矩形OABC繞著點O逆時針旋轉,使點A恰好落在BC邊上的A1處,則點C的對應點C1的坐標為()A.(﹣) B.(﹣) C.(﹣) D.(﹣)3.己知a、b、c均不為0,且,若,則k=()A.-1 B.0 C.2 D.34.一個盒子里裝有若干個紅球和白球,每個球除顏色以外都相同.5位同學進行摸球游戲,每位同學摸10次(摸出1球后放回,搖勻后再繼續(xù)摸),其中摸到紅球數(shù)依次為8,5,9,7,6,則估計盒中紅球和白球的個數(shù)是()A.紅球比白球多 B.白球比紅球多 C.紅球,白球一樣多 D.無法估計5.二次函數(shù)圖象的頂點坐標是()A. B. C. D.6.如圖,將繞點按逆時針方向旋轉后得到,若,則的度數(shù)是()A. B. C. D.7.當函數(shù)是二次函數(shù)時,a的取值為()A. B. C. D.8.如圖所示,拋物線的對稱軸為直線,與軸的一個交點坐標為,其部分圖象如圖所示,下列結論:①;②;③方程的兩個根是;④方程有一個實根大于;⑤當時,隨增大而增大.其中結論正確的個數(shù)是()A.個 B.個 C.個 D.個9.口袋中有2個紅球和1個黑球,每次摸到后放回,兩次都摸到紅球的概率為()A. B. C. D.10.如果1是方程的一個根,則方程的另一個根是()A. B.2 C. D.111.已知點都在反比例函數(shù)的圖象上,則下列關系式一定正確的是()A. B.C. D.12.正三角形外接圓面積是,其內切圓面積是()A. B. C. D.二、填空題(每題4分,共24分)13.某地區(qū)2017年投入教育經(jīng)費2500萬元,2019年計劃投入教育經(jīng)費3025萬元,則2017年至2019年,該地區(qū)投入教育經(jīng)費的年平均增長率為_____.14.如圖所示,半圓O的直徑AB=4,以點B為圓心,為半徑作弧,交半圓O于點C,交直徑AB于點D,則圖中陰影部分的面積是_____________.15.一元二次方程2x2+3x+1=0的兩個根之和為__________.16.如圖,河的兩岸、互相平行,點、、是河岸上的三點,點是河岸上一個建筑物,在處測得,在處測得,若米,則河兩岸之間的距離約為______米(,結果精確到0.1米)(必要可用參考數(shù)據(jù):)17.如圖,拋物線y=﹣x2﹣2x+3與x軸交于點A、B,把拋物線在x軸及其上方的部分記作C1,將C1關于點B的中心對稱得C2,C2與x軸交于另一點C,將C2關于點C的中心對稱得C3,連接C1與C3的頂點,則圖中陰影部分的面積為.18.關于x的方程的根為______.三、解答題(共78分)19.(8分)已知拋物線y=ax2+bx+c經(jīng)過點A(﹣2,0),B(3,0),與y軸負半軸交于點C,且OC=OB.(1)求拋物線的解析式;(2)在y軸負半軸上存在一點D,使∠CBD=∠ADC,求點D的坐標;(3)點D關于直線BC的對稱點為D′,將拋物線y=ax2+bx+c向下平移h個單位,與線段DD′只有一個交點,直接寫出h的取值范圍.20.(8分)已知二次函數(shù)y=2x2+4x+3,當﹣2≤x≤﹣1時,求函數(shù)y的最小值和最大值,如圖是小明同學的解答過程.你認為他做得正確嗎?如果正確,請說明解答依據(jù),如果不正確,請寫出你得解答過程.21.(8分)根據(jù)廣州市垃圾分類標準,將垃圾分為“廚余垃圾、可回收垃圾、有害垃圾、其它垃圾”四類.小明將分好類的兩袋垃圾準確地投遞到小區(qū)的分類垃圾桶里.請用列舉法求小明投放的兩袋垃圾是“廚余垃圾和有害垃圾”的概率.22.(10分)如圖1,在中,是的直徑,交于點,過點的直線交于點,交的延長線于點.(1)求證:是的切線;(2)若,試求的長;(3)如圖2,點是弧的中點,連結,交于點,若,求的值.23.(10分)已知:如圖,∠ABC,射線BC上一點D,求作:等腰△PBD,使線段BD為等腰△PBD的底邊,點P在∠ABC內部,且點P到∠ABC兩邊的距離相等.(不寫作法,保留作圖痕跡)24.(10分)如圖,在平面直角坐標系中,△ABC的三個頂點坐標分別為A(3,2)、B(3,5)、C(1,2).⑴在平面直角坐標系中畫出△ABC關于原點對稱的△A1B1C1;⑵把△ABC繞點A順時針旋轉一定的角度,得圖中的△AB2C2,點C2在AB上.請寫出:①旋轉角為度;②點B2的坐標為.25.(12分)如圖,已知A(﹣4,0),B(0,4),現(xiàn)以A點為位似中心,相似比為9:4,將OB向右側放大,B點的對應點為C.(1)求C點坐標及直線BC的解析式:(2)點P從點A開始以每秒2個單位長度的速度勻速沿著x軸向右運動,若運動時間用t秒表示.△BCP的面積用S表示,請你直接寫出S與t的函數(shù)關系.26.如圖,在平面直角坐標系中,已知△ABC的三個頂點的坐標分別是A(﹣4,1),B(﹣1,2),C(﹣2,4).(1)將△ABC向右平移4個單位后得到△A1B1C1,請畫出△A1B1C1,并寫出點B1的坐標;(2)△A2B2C2和△A1B1C1關于原點O中心對稱,請畫出△A2B2C2,并寫出點C2的坐標;(3)連接點A和點B2,點B和點A2,得到四邊形AB2A2B,試判斷四邊形AB2A2B的形狀(無須說明理由).
參考答案一、選擇題(每題4分,共48分)1、B【解析】試題分析:先根據(jù)各選項中反比例函數(shù)圖象的位置確定a的范圍,再根據(jù)a的范圍對拋物線的大致位置進行判斷,從而對各選項作出判斷:∵當反比例函數(shù)經(jīng)過第二、四象限時,a<0,∴拋物線(b>0)中a<0,b>0,∴拋物線開口向下.所以A選項錯誤.∵當反比例函數(shù)經(jīng)過第一、三象限時,a>0,∴拋物線(b>0)中a>0,b>0,∴拋物線開口向上,拋物線與y軸的交點在x軸上方.所以B選項正確,C,D選項錯誤.故選B.考點:1.二次函數(shù)和反比例函數(shù)的圖象與系數(shù)的關系;2.數(shù)形結合思想的應用.2、A【分析】直接利用相似三角形的判定與性質得出△ONC1三邊關系,再利用勾股定理得出答案.【詳解】過點C1作C1N⊥x軸于點N,過點A1作A1M⊥x軸于點M,由題意可得:∠C1NO=∠A1MO=90°,∠1=∠2=∠1,則△A1OM∽△OC1N,∵OA=5,OC=1,∴OA1=5,A1M=1,∴OM=4,∴設NO=1x,則NC1=4x,OC1=1,則(1x)2+(4x)2=9,解得:x=±(負數(shù)舍去),則NO=,NC1=,故點C的對應點C1的坐標為:(-,).故選A.【點睛】此題主要考查了矩形的性質以及勾股定理等知識,正確得出△A1OM∽△OC1N是解題關鍵.3、D【解析】分別用含有k的代數(shù)式表示出2b+c,2c+a,2a+b,再相加即可求解.【詳解】∵∴,,三式相加得,∵∴k=3.故選D.【點睛】本題考查了比的性質,解題的關鍵是求得2b+c=ak,2c+a=bk,2a+b=ck.4、A【解析】根據(jù)題意可得5位同學摸到紅球的頻率為,由此可得盒子里的紅球比白球多.故選A.5、B【解析】根據(jù)題目中二次函數(shù)的頂點式,可以直接寫出該函數(shù)的頂點坐標.【詳解】∵二次函數(shù)y=﹣(x+2)2+6,∴該函數(shù)的頂點坐標為(﹣2,6),故選:B.【點睛】本題主要考查了二次函數(shù)的性質,關鍵是熟記:拋物線的頂點坐標是,對稱軸是.6、A【分析】根據(jù)繞點按逆時針方向旋轉后得到,可得,然后根據(jù)可以求出的度數(shù).【詳解】∵繞點按逆時針方向旋轉后得到∴又∵∴【點睛】本題考查的是對于旋轉角的理解,能利用定義從圖形中準確的找出旋轉角是關鍵.7、D【分析】由函數(shù)是二次函數(shù)得到a-1≠0即可解題.【詳解】解:∵是二次函數(shù),∴a-1≠0,解得:a≠1,故選你D.【點睛】本題考查了二次函數(shù)的概念,屬于簡單題,熟悉二次函數(shù)的定義是解題關鍵.8、A【解析】根據(jù)二次函數(shù)的圖象與性質進行解答即可.【詳解】解:∵拋物線開口方向向下∴a<0又∵對稱軸x=1∴∴b=-2a>0又∵當x=0時,可得c=3∴abc<0,故①正確;∵b=-2a>0,∴y=ax2-2ax+c當x=-1,y<0∴a+2a+c<0,即3a+c<0又∵a<0∴4a+c<0,故②錯誤;∵,c=3∴∴x(ax-b)=0又∵b=-2a∴,即③正確;∵對稱軸x=1,與x軸的左交點的橫坐標小于0∴函數(shù)圖像與x軸的右交點的橫坐標大于2∴的另一解大于2,故④正確;由函數(shù)圖像可得,當時,隨增大而增大,故⑤正確;故答案為A.【點睛】本題考查二次函數(shù)的圖象與性質,熟練運用二次函數(shù)的基本知識和正確運用數(shù)形結合思想是解答本題的關鍵.9、D【分析】根據(jù)題意畫出樹形圖即可求出兩次都摸到紅球的概率,進而得出選項.【詳解】解:設紅球為1,黑球為2,畫樹形圖得:由樹形圖可知:兩次都摸到紅球的概率為.故選:D.【點睛】本題考查用列表法與樹狀圖法求隨機事件的概率,列舉法(樹形圖法)求概率的關鍵在于列舉出所有可能的結果,列表法是一種,但當一個事件涉及三個或更多元素時,為不重不漏地列出所有可能的結果,通常采用樹形圖.10、A【分析】利用方程解的定義找到相等關系,將該方程的已知根1代入兩根之積公式和兩根之和公式列出方程組,解方程組即可求出方程的另一根.【詳解】設方程的另一根為.又解得:故選A.【點睛】本題考查根與系數(shù)的關系,解題突破口是將1代入兩根之積公式和兩根之和公式列出方程組.11、C【分析】根據(jù)反比例函數(shù)的性質即可得到答案.【詳解】∵k=3>0,反比例函數(shù)的圖形在第一象限或第三象限,∴在每個象限內,y隨著x的增大而減小,∵點,且3<6,∴,故選:C.【點睛】此題考查反比例函數(shù)的性質,正確掌握函數(shù)圖象的增減性是解題的關鍵.12、D【分析】△ABC為等邊三角形,利用外接圓和內切圓的性質得∠OBC=30°,在Rt△OBD中,利用含30°的直角三角形三邊的關系得到OD=OB,然后根據(jù)圓的面積公式得到△ABC的外接圓的面積與其內切圓的面積之比,即可得解.【詳解】△ABC為等邊三角形,AD為角平分線,⊙O為△ABC的內切圓,連OB,如圖所示:∵△ABC為等邊三角形,⊙O為△ABC的內切圓,∴點O為△ABC的外心,AD⊥BC,∴∠OBC=30°,在Rt△OBD中,OD=OB,∴△ABC的外接圓的面積與其內切圓的面積之比=OB2:OD2=4:1.∵正三角形外接圓面積是,∴其內切圓面積是故選:D.【點睛】本題考查了正多邊形與圓:正多邊有內切圓和外接圓,并且它們是同心圓.也考查了等邊三角形的性質.二、填空題(每題4分,共24分)13、10%【解析】設年平均增長率為x,則經(jīng)過兩次變化后2019年的經(jīng)費為2500(1+x)2;2019年投入教育經(jīng)費3025萬元,建立方程2500(1+x)2=3025,求解即可.【詳解】解:設年平均增長率為x,得2500(1+x)2=3025,解得x=0.1=10%,或x=-2.1(不合題意舍去).所以2017年到2019年該地區(qū)投入教育經(jīng)費的年平均增長率為10%.【點睛】本題考查一元二次方程的應用--求平均變化率的方法,能夠列出式子是解答本題的關鍵.14、【解析】解:連接OC,CB,過O作OE⊥BC于E,∴BE=BC==.∵OB=AB=2,∴OE=1,∴∠B=30°,∴∠COA=60°,===.故答案為.15、-【解析】試題解析:由韋達定理可得:故答案為:點睛:一元二次方程根與系數(shù)的關系:16、54.6【分析】過P點作PD垂直直線b于點D,構造出兩個直角三角形,設河兩岸之間的距離約為x米,根據(jù)所設分別求出BD和AD的值,再利用AD=AB+BD得出含x的方程,解方程即可得出答案.【詳解】過P點作PD垂直直線b于點D設河兩岸之間的距離約為x米,即PD=x,則,可得:解得:x=54.6故答案為54.6【點睛】本題考查的是銳角三角函數(shù)的應用,解題關鍵是做PD垂直直線b于點D,構造出直角三角形.17、1【分析】將x軸下方的陰影部分沿對稱軸分成兩部分補到x軸上方,即可將不規(guī)則圖形轉換為規(guī)則的長方形,則可求出.【詳解】∵拋物線與軸交于點、,∴當時,則,解得或,則,的坐標分別為(-3,0),(1,0),∴的長度為4,從,兩個部分頂點分別向下作垂線交軸于、兩點.根據(jù)中心對稱的性質,軸下方部分可以沿對稱軸平均分成兩部分補到與,如圖所示,陰影部分轉化為矩形,根據(jù)對稱性,可得,則,利用配方法可得,則頂點坐標為(-1,4),即陰影部分的高為4,.故答案為:1.【點睛】本題考查了中心對稱的性質、配方法求拋物線的頂點坐標及求拋物線與x軸交點坐標,解題關鍵是將不規(guī)則圖形通過對稱轉換為規(guī)則圖形,求陰影面積經(jīng)常要使用轉化的數(shù)學思想.18、x1=0,x2=【分析】直接由因式分解法方程,即可得到答案.【詳解】解:∵,∴或,∴,;故答案為:,.【點睛】本題考查了解一元二次方程,解題的關鍵是熟練掌握因式分解法解方程.三、解答題(共78分)19、(1)y=x2﹣x﹣3;(2)D(0,﹣6);(3)3≤h≤1【分析】(1)OC=OB,則點C(0,﹣3),拋物線的表達式為:y=a(x+2)(x﹣3)=a(x2﹣x﹣6),﹣6a=﹣3,解得:a=,即可求解;(2)CH=HD=m,tan∠ADC==tan∠DBC=,解得:m=3或﹣4(舍去﹣4),即可求解;(3)過點C作x軸的平行線交DH的延長線于點D′,則D′(﹣3,﹣3);當平移后的拋物線過點C時,拋物線與線段DD′有一個公共點,此時,h=3;當平移后的拋物線過點D′時,拋物線與線段DD′有一個公共點,即可求解.【詳解】解:(1)OC=OB,則點C(0,﹣3),拋物線的表達式為:y=a(x+2)(x﹣3)=a(x2﹣x﹣6),﹣6a=﹣3,解得:a=,故拋物線的表達式為:y=x2﹣x﹣3;(2)設CD=m,過點D作DH⊥BC交BC的延長線于點H,則CH=HD=m,tan∠ADC==tan∠DBC=,解得:m=3或﹣4(舍去﹣4),故點D(0,﹣6);(3)過點C作x軸的平行線交DH的延長線于點D′,則D′(﹣3,﹣3);平移后拋物線的表達式為:y=x2﹣x﹣3﹣h,當平移后的拋物線過點C時,拋物線與線段DD′有一個公共點,此時,h=3;當平移后的拋物線過點D′時,拋物線與線段DD′有一個公共點,即﹣3=×9+﹣h,解得:h=1,故3≤h≤1.【點睛】此題主要考查二次函數(shù)綜合,解題的關鍵是熟知待定系數(shù)法求解析式、三角函數(shù)的定義及二次函數(shù)平移的特點.20、錯誤,見解析【分析】根據(jù)二次函數(shù)的性質和小明的做法,可以判斷小明的做法是否正確,然后根據(jù)二次函數(shù)的性質即可解答本題.【詳解】解:小明的做法是錯誤的,正確的做法如下:∵二次函數(shù)y=2x2+4x+1=2(x+1)2+1,∴該函數(shù)圖象開口向上,該函數(shù)的對稱軸是直線x=﹣1,當x=﹣1時取得最小值,最小值是1,∵﹣2≤x≤﹣1,∴當x=﹣2時取得最大值,此時y=1,當x=﹣1時取得最小值,最小值是y=1,由上可得,當﹣2≤x≤﹣1時,函數(shù)y的最小值是1,最大值是1.【點睛】本題考查二次函數(shù)的性質,關鍵在于熟記性質.21、見解析,【分析】首先利用樹狀圖法列舉出所有可能,進而利用概率公式求出答案.【詳解】解:分別記廚余垃圾、可回收垃圾、有害垃圾、其它垃圾為A、B、C、D,畫樹狀圖如下:由樹狀圖知,共有12種等可能結果,其中小明投放的兩袋垃圾是“廚余垃圾和有害垃圾”的結果有2種,所以小明投放的兩袋垃圾是“廚余垃圾和有害垃圾”的概率為=.【點睛】本題主要考查的是利用樹狀圖求解概率,解此題需要正確的運用樹狀圖,所以掌握樹狀圖是解此題的關鍵.22、(1)證明見解析(2)(3)【分析】(1)連接半徑,根據(jù)已知條件結合圓的基本性質可推出,即,即可得證結論;(2)設,根據(jù)已知條件列出關于的方程、解方程即可得到圓心角,再求得半徑,然后利用弧長公式即可得解;(3)由,設,然后根據(jù)已知條件利用圓的一些性質、勾股定理以及三角形的不同求法分別表示出、,再利用平行線的判定以及相似三角形的判定和性質即可求得結論.【詳解】解:(1)連結,如圖:∵是的直徑∴∴∵∴∵∴∴∵在圓上∴是的切線.(2)設∵∴∴∵在中,∴∴∴∵∴∴連結,過作于點,如圖:∵點是的中點∴∴設∴∴∴∵在中,∴∵,∴∴∴.故答案是:(1)證明見解析(2)(3)【點睛】本題考查了圓的相關性質、切線的判定、等腰三角形的判定和性質、平行線的判定和性質、相似三角形的判定和性質、直角三角形的相關性質、銳角三角函數(shù)、三角形的外角性質以及弧長的計算公式等,綜合性較強,但難度不大屬中檔題型.23、見解析.【分析】根據(jù)角平分線的性質、線段的垂直平分線的性質即可解決問題.【詳解】∵點P在∠ABC的平分線上,∴點P到∠ABC兩邊的距離相等(角平分線上的點到角的兩邊距離相等),∵點P在線段BD的垂直平分線上,∴PB=PD(線段的垂直平分線上的點到線段的兩個端點的距離相等),如圖所示:【點睛】本題考查作圖﹣復雜作圖、角平分線的性質、線段的垂直平分線的性質等知識,解題的關鍵是靈活運用所學知識解決問題.24、⑴詳見解析;⑵①90;②(6,2)【分析】(1)分別得到點A、B、C關于x軸的對稱點,連接點A1,B1,C1,即可解答;
(2)①根據(jù)點A,B,C的坐標分別求出AC,BC,AC的長度,根據(jù)勾股定理逆定理得到∠CAB=90°,即可得到旋轉角;
②根據(jù)旋轉的性質可知AB=AB2=3,所以CB2=AC+AB2=5,所以B2的坐標為(6,2).【詳解】解:(1)A(3,2)、B(3,5)、C(1,2)關于x軸的對稱點分別為A1(3,-2),B1(3,-5),C1(1,-2),
如圖所示,
(2)①∵A(3,2)、B(3,5)、C(1,2),
∴AB=3,AC=2,BC=,∴,
∵AB2+AC2=13,
∴AB2+AC2=BC2,
∴∠CAB=90°,
∵AC與AC2的夾角為∠CAC2,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 體育護理專業(yè)就業(yè)前景
- 黑龍江安全試題及答案
- 2025-2026人教版一年級科學期末考
- 腸易激綜合征的腸-腸軸納米調節(jié)策略
- 針織廠衛(wèi)生管理制度
- 衛(wèi)生院單位規(guī)章制度
- 養(yǎng)生會衛(wèi)生管理制度
- 木業(yè)職業(yè)病衛(wèi)生管理制度
- 公共衛(wèi)生糖尿病管理制度
- 衛(wèi)生院醫(yī)療管理工作制度
- 云南省玉溪市2025-2026學年八年級上學期1月期末物理試題(原卷版+解析版)
- 2026年哈爾濱通河縣第一批公益性崗位招聘62人考試參考試題及答案解析
- 就業(yè)協(xié)議書解約函模板
- 研發(fā)部門員工加班管理細則
- 鋼結構橋梁施工監(jiān)測方案
- 2025人教pep版三年級英語上冊字帖
- 《5G移動通信》課件-項目六 5G網(wǎng)絡中的人工智能技術
- 2025江蘇蘇州高新區(qū)獅山商務創(chuàng)新區(qū)下屬國有企業(yè)招聘9人筆試題庫及答案詳解
- 教培機構年終工作總結
- 2025年秋季青島版三年級數(shù)學上冊求比一個數(shù)的幾倍多(少)幾的數(shù)教學課件
- 2025年法醫(yī)學法醫(yī)鑒定技能測試答案及解析
評論
0/150
提交評論