湖南省懷化市名校2024年中考三模數(shù)學(xué)試題含解析_第1頁(yè)
湖南省懷化市名校2024年中考三模數(shù)學(xué)試題含解析_第2頁(yè)
湖南省懷化市名校2024年中考三模數(shù)學(xué)試題含解析_第3頁(yè)
湖南省懷化市名校2024年中考三模數(shù)學(xué)試題含解析_第4頁(yè)
湖南省懷化市名校2024年中考三模數(shù)學(xué)試題含解析_第5頁(yè)
已閱讀5頁(yè),還剩18頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

湖南省懷化市名校2024年中考三模數(shù)學(xué)試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)碼填寫(xiě)清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時(shí)請(qǐng)按要求用筆。3.請(qǐng)按照題號(hào)順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書(shū)寫(xiě)的答案無(wú)效;在草稿紙、試卷上答題無(wú)效。4.作圖可先使用鉛筆畫(huà)出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題(本大題共12個(gè)小題,每小題4分,共48分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1.小紅上學(xué)要經(jīng)過(guò)三個(gè)十字路口,每個(gè)路口遇到紅、綠燈的機(jī)會(huì)都相同,小紅希望小學(xué)時(shí)經(jīng)過(guò)每個(gè)路口都是綠燈,但實(shí)際這樣的機(jī)會(huì)是()A. B. C. D.2.有三張正面分別標(biāo)有數(shù)字-2,3,4的不透明卡片,它們除數(shù)字不同外,其余全部相同,現(xiàn)將它們背面朝上洗勻后,從中任取一張(不放回),再?gòu)氖S嗟目ㄆ腥稳∫粡?,則兩次抽取的卡片上的數(shù)字之積為正偶數(shù)的概率是()A. B. C. D.3.若關(guān)于x的一元二次方程(k-1)x2+4x+1=0有兩個(gè)不相等的實(shí)數(shù)根,則k的取值范圍是()A.k<5 B.k<5,且k≠1 C.k≤5,且k≠1 D.k>54.如圖,在平面直角坐標(biāo)系中,把△ABC繞原點(diǎn)O旋轉(zhuǎn)180°得到△CDA,點(diǎn)A,B,C的坐標(biāo)分別為(﹣5,2),(﹣2,﹣2),(5,﹣2),則點(diǎn)D的坐標(biāo)為()A.(2,2) B.(2,﹣2) C.(2,5) D.(﹣2,5)5.用半徑為8的半圓圍成一個(gè)圓錐的側(cè)面,則圓錐的底面半徑等于()A.4 B.6 C.16π D.86.一輛慢車和一輛快車沿相同的路線從A地到B地,所行駛的路程與時(shí)間的函數(shù)圖形如圖所示,下列說(shuō)法正確的有()①快車追上慢車需6小時(shí);②慢車比快車早出發(fā)2小時(shí);③快車速度為46km/h;④慢車速度為46km/h;⑤A、B兩地相距828km;⑥快車從A地出發(fā)到B地用了14小時(shí)A.2個(gè) B.3個(gè) C.4個(gè) D.5個(gè)7.向某一容器中注水,注滿為止,表示注水量與水深的函數(shù)關(guān)系的圖象大致如圖所示,則該容器可能是()A. B.C. D.8.下列幾何體中,主視圖和俯視圖都為矩形的是(

)A. B. C. D.9.要整齊地栽一行樹(shù),只要確定兩端的樹(shù)坑的位置,就能確定這一行樹(shù)坑所在的直線,這里用到的數(shù)學(xué)知識(shí)是()A.兩點(diǎn)之間的所有連線中,線段最短B.經(jīng)過(guò)兩點(diǎn)有一條直線,并且只有一條直線C.直線外一點(diǎn)與直線上各點(diǎn)連接的所有線段中,垂線段最短D.經(jīng)過(guò)一點(diǎn)有且只有一條直線與已知直線垂直10.若分式方程無(wú)解,則a的值為()A.0 B.-1 C.0或-1 D.1或-111.如圖,左、右并排的兩棵樹(shù)AB和CD,小樹(shù)的高AB=6m,大樹(shù)的高CD=9m,小明估計(jì)自己眼睛距地面EF=1.5m,當(dāng)他站在F點(diǎn)時(shí)恰好看到大樹(shù)頂端C點(diǎn).已知此時(shí)他與小樹(shù)的距離BF=2m,則兩棵樹(shù)之間的距離BD是()A.1m B.m C.3m D.m12.如圖,已知△ABC,按以下步驟作圖:①分別以B,C為圓心,以大于BC的長(zhǎng)為半徑作弧,兩弧相交于兩點(diǎn)M,N;②作直線MN交AB于點(diǎn)D,連接CD.若CD=AC,∠A=50°,則∠ACB的度數(shù)為()A.90° B.95° C.105° D.110°二、填空題:(本大題共6個(gè)小題,每小題4分,共24分.)13.如圖,BD是⊙O的直徑,BA是⊙O的弦,過(guò)點(diǎn)A的切線交BD延長(zhǎng)線于點(diǎn)C,OE⊥AB于E,且AB=AC,若CD=2,則OE的長(zhǎng)為_(kāi)____.14.分解因式:ab2﹣9a=_____.15.在中,若,則的度數(shù)是______.16.如圖,直徑為1000mm的圓柱形水管有積水(陰影部分),水面的寬度AB為800mm,則水的最大深度CD是______mm.17.如圖,CD是⊙O直徑,AB是弦,若CD⊥AB,∠BCD=25°,則∠AOD=_____°.18.如圖,在平面直角坐標(biāo)系中,點(diǎn)O為坐標(biāo)原點(diǎn),點(diǎn)P在第一象限,⊙P與x軸交于O,A兩點(diǎn),點(diǎn)A的坐標(biāo)為(6,0),⊙P的半徑為,則點(diǎn)P的坐標(biāo)為_(kāi)______.三、解答題:(本大題共9個(gè)小題,共78分,解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟.19.(6分)已知:如圖,梯形ABCD,DC∥AB,對(duì)角線AC平分∠BCD,點(diǎn)E在邊CB的延長(zhǎng)線上,EA⊥AC,垂足為點(diǎn)A.(1)求證:B是EC的中點(diǎn);(2)分別延長(zhǎng)CD、EA相交于點(diǎn)F,若AC2=DC?EC,求證:AD:AF=AC:FC.20.(6分)如圖,一次函數(shù)y=2x﹣4的圖象與反比例函數(shù)y=的圖象交于A、B兩點(diǎn),且點(diǎn)A的橫坐標(biāo)為1.(1)求反比例函數(shù)的解析式;(2)點(diǎn)P是x軸上一動(dòng)點(diǎn),△ABP的面積為8,求P點(diǎn)坐標(biāo).21.(6分)已知關(guān)于x的方程x1+(1k﹣1)x+k1﹣1=0有兩個(gè)實(shí)數(shù)根x1,x1.求實(shí)數(shù)k的取值范圍;若x1,x1滿足x11+x11=16+x1x1,求實(shí)數(shù)k的值.22.(8分)如圖,某大樓的頂部豎有一塊廣告牌CD,小李在山坡的坡腳A處測(cè)得廣告牌底部D的仰角為60°沿坡面AB向上走到B處測(cè)得廣告牌頂部C的仰角為45°,已知山坡AB的傾斜角∠BAH=30°,AB=20米,AB=30米.(1)求點(diǎn)B距水平面AE的高度BH;(2)求廣告牌CD的高度.23.(8分)為支援雅安災(zāi)區(qū),某學(xué)校計(jì)劃用“義捐義賣”活動(dòng)中籌集的部分資金用于購(gòu)買(mǎi)A,B兩種型號(hào)的學(xué)習(xí)用品共1000件,已知A型學(xué)習(xí)用品的單價(jià)為20元,B型學(xué)習(xí)用品的單價(jià)為30元.若購(gòu)買(mǎi)這批學(xué)習(xí)用品用了26000元,則購(gòu)買(mǎi)A,B兩種學(xué)習(xí)用品各多少件?若購(gòu)買(mǎi)這批學(xué)習(xí)用品的錢(qián)不超過(guò)28000元,則最多購(gòu)買(mǎi)B型學(xué)習(xí)用品多少件?24.(10分)先化簡(jiǎn),,其中x=.25.(10分)在平面直角坐標(biāo)系中,O為原點(diǎn),點(diǎn)A(8,0)、點(diǎn)B(0,4),點(diǎn)C、D分別是邊OA、AB的中點(diǎn).將△ACD繞點(diǎn)A順時(shí)針?lè)较蛐D(zhuǎn),得△AC′D′,記旋轉(zhuǎn)角為α.(I)如圖①,連接BD′,當(dāng)BD′∥OA時(shí),求點(diǎn)D′的坐標(biāo);(II)如圖②,當(dāng)α=60°時(shí),求點(diǎn)C′的坐標(biāo);(III)當(dāng)點(diǎn)B,D′,C′共線時(shí),求點(diǎn)C′的坐標(biāo)(直接寫(xiě)出結(jié)果即可).26.(12分)解不等式組,并將解集在數(shù)軸上表示出來(lái).27.(12分)如圖,△ABC是等邊三角形,AO⊥BC,垂足為點(diǎn)O,⊙O與AC相切于點(diǎn)D,BE⊥AB交AC的延長(zhǎng)線于點(diǎn)E,與⊙O相交于G、F兩點(diǎn).(1)求證:AB與⊙O相切;(2)若等邊三角形ABC的邊長(zhǎng)是4,求線段BF的長(zhǎng)?

參考答案一、選擇題(本大題共12個(gè)小題,每小題4分,共48分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、B【解析】分析:列舉出所有情況,看各路口都是綠燈的情況占總情況的多少即可.詳解:畫(huà)樹(shù)狀圖,得∴共有8種情況,經(jīng)過(guò)每個(gè)路口都是綠燈的有一種,∴實(shí)際這樣的機(jī)會(huì)是.故選B.點(diǎn)睛:此題考查了樹(shù)狀圖法求概率,樹(shù)狀圖法適用于三步或三步以上完成的事件,解題時(shí)要注意列出所有的情形.用到的知識(shí)點(diǎn)為:概率=所求情況數(shù)與總情況數(shù)之比.2、C【解析】畫(huà)樹(shù)狀圖得:

∵共有6種等可能的結(jié)果,兩次抽取的卡片上的數(shù)字之積為正偶數(shù)的有2種情況,

∴兩次抽取的卡片上的數(shù)字之積為正偶數(shù)的概率是:.故選C.【點(diǎn)睛】運(yùn)用列表法或樹(shù)狀圖法求概率.注意畫(huà)樹(shù)狀圖法與列表法可以不重復(fù)不遺漏的列出所有可能的結(jié)果,列表法適合于兩步完成的事件;樹(shù)狀圖法適合兩步或兩步以上完成的事件.3、B【解析】試題解析:∵關(guān)于x的一元二次方程方程有兩個(gè)不相等的實(shí)數(shù)根,∴,即,解得:k<5且k≠1.故選B.4、A【解析】分析:依據(jù)四邊形ABCD是平行四邊形,即可得到BD經(jīng)過(guò)點(diǎn)O,依據(jù)B的坐標(biāo)為(﹣2,﹣2),即可得出D的坐標(biāo)為(2,2).詳解:∵點(diǎn)A,C的坐標(biāo)分別為(﹣5,2),(5,﹣2),∴點(diǎn)O是AC的中點(diǎn),∵AB=CD,AD=BC,∴四邊形ABCD是平行四邊形,∴BD經(jīng)過(guò)點(diǎn)O,∵B的坐標(biāo)為(﹣2,﹣2),∴D的坐標(biāo)為(2,2),故選A.點(diǎn)睛:本題主要考查了坐標(biāo)與圖形變化,圖形或點(diǎn)旋轉(zhuǎn)之后要結(jié)合旋轉(zhuǎn)的角度和圖形的特殊性質(zhì)來(lái)求出旋轉(zhuǎn)后的點(diǎn)的坐標(biāo).5、A【解析】

由于半圓的弧長(zhǎng)=圓錐的底面周長(zhǎng),那么圓錐的底面周長(zhǎng)為8π,底面半徑=8π÷2π.【詳解】解:由題意知:底面周長(zhǎng)=8π,∴底面半徑=8π÷2π=1.故選A.【點(diǎn)睛】此題主要考查了圓錐側(cè)面展開(kāi)扇形與底面圓之間的關(guān)系,圓錐的側(cè)面展開(kāi)圖是一個(gè)扇形,此扇形的弧長(zhǎng)等于圓錐底面周長(zhǎng),扇形的半徑等于圓錐的母線長(zhǎng),解決本題的關(guān)鍵是應(yīng)用半圓的弧長(zhǎng)=圓錐的底面周長(zhǎng).6、B【解析】

根據(jù)圖形給出的信息求出兩車的出發(fā)時(shí)間,速度等即可解答.【詳解】解:①兩車在276km處相遇,此時(shí)快車行駛了4個(gè)小時(shí),故錯(cuò)誤.②慢車0時(shí)出發(fā),快車2時(shí)出發(fā),故正確.③快車4個(gè)小時(shí)走了276km,可求出速度為69km/h,錯(cuò)誤.④慢車6個(gè)小時(shí)走了276km,可求出速度為46km/h,正確.⑤慢車走了18個(gè)小時(shí),速度為46km/h,可得A,B距離為828km,正確.⑥快車2時(shí)出發(fā),14時(shí)到達(dá),用了12小時(shí),錯(cuò)誤.故答案選B.【點(diǎn)睛】本題考查了看圖手機(jī)信息的能力,注意快車并非0時(shí)刻出發(fā)是解題關(guān)鍵.7、D【解析】

根據(jù)函數(shù)的圖象和所給出的圖形分別對(duì)每一項(xiàng)進(jìn)行判斷即可.【詳解】由函數(shù)圖象知:隨高度h的增加,y也增加,但隨h變大,每單位高度的增加,注水量h的增加量變小,圖象上升趨勢(shì)變緩,其原因只能是水瓶平行于底面的截面的半徑由底到頂逐漸變小,故D項(xiàng)正確.故選:D.【點(diǎn)睛】本題主要考查函數(shù)模型及其應(yīng)用.8、B【解析】A、主視圖為等腰三角形,俯視圖為圓以及圓心,故A選項(xiàng)錯(cuò)誤;B、主視圖為矩形,俯視圖為矩形,故B選項(xiàng)正確;C、主視圖,俯視圖均為圓,故C選項(xiàng)錯(cuò)誤;D、主視圖為矩形,俯視圖為三角形,故D選項(xiàng)錯(cuò)誤.故選:B.9、B【解析】

本題要根據(jù)過(guò)平面上的兩點(diǎn)有且只有一條直線的性質(zhì)解答.【詳解】根據(jù)兩點(diǎn)確定一條直線.故選:B.【點(diǎn)睛】本題考查了“兩點(diǎn)確定一條直線”的公理,難度適中.10、D【解析】試題分析:在方程兩邊同乘(x+1)得:x-a=a(x+1),整理得:x(1-a)=2a,當(dāng)1-a=0時(shí),即a=1,整式方程無(wú)解,當(dāng)x+1=0,即x=-1時(shí),分式方程無(wú)解,把x=-1代入x(1-a)=2a得:-(1-a)=2a,解得:a=-1,故選D.點(diǎn)睛:本題考查了分式方程的解,解決本題的關(guān)鍵是熟記分式方程無(wú)解的條件.11、B【解析】

由∠AGE=∠CHE=90°,∠AEG=∠CEH可證明△AEG∽△CEH,根據(jù)相似三角形對(duì)應(yīng)邊成比例求出GH的長(zhǎng)即BD的長(zhǎng)即可.【詳解】由題意得:FB=EG=2m,AG=AB﹣BG=6﹣1.5=4.5m,CH=CD﹣DH=9﹣1.5=7.5m,∵AG⊥EH,CH⊥EH,∴∠AGE=∠CHE=90°,∵∠AEG=∠CEH,∴△AEG∽△CEH,∴==,即=,解得:GH=,則BD=GH=m,故選:B.【點(diǎn)睛】本題考查了相似三角形的應(yīng)用,解題的關(guān)鍵是從實(shí)際問(wèn)題中抽象出相似三角形.12、C【解析】

根據(jù)等腰三角形的性質(zhì)得到∠CDA=∠A=50°,根據(jù)三角形內(nèi)角和定理可得∠DCA=80°,根據(jù)題目中作圖步驟可知,MN垂直平分線段BC,根據(jù)線段垂直平分線定理可知BD=CD,根據(jù)等邊對(duì)等角得到∠B=∠BCD,根據(jù)三角形外角性質(zhì)可知∠B+∠BCD=∠CDA,進(jìn)而求得∠BCD=25°,根據(jù)圖形可知∠ACB=∠ACD+∠BCD,即可解決問(wèn)題.【詳解】∵CD=AC,∠A=50°∴∠CDA=∠A=50°∵∠CDA+∠A+∠DCA=180°∴∠DCA=80°根據(jù)作圖步驟可知,MN垂直平分線段BC∴BD=CD∴∠B=∠BCD∵∠B+∠BCD=∠CDA∴2∠BCD=50°∴∠BCD=25°∴∠ACB=∠ACD+∠BCD=80°+25°=105°故選C【點(diǎn)睛】本題考查了等腰三角形的性質(zhì)、三角形內(nèi)角和定理、線段垂直平分線定理以及三角形外角性質(zhì),熟練掌握各個(gè)性質(zhì)定理是解題關(guān)鍵.二、填空題:(本大題共6個(gè)小題,每小題4分,共24分.)13、【解析】

連接OA,所以∠OAC=90°,因?yàn)锳B=AC,所以∠B=∠C,根據(jù)圓周角定理可知∠AOD=2∠B=2∠C,故可求出∠B和∠C的度數(shù),在Rt△OAC中,求出OA的值,再在Rt△OAE中,求出OE的值,得到答案.【詳解】連接OA,由題意可知∠OAC=90°,∵AB=AC,∴∠B=∠C,根據(jù)圓周角定理可知∠AOD=2∠B=2∠C,∵∠OAC=90°∴∠C+∠AOD=90°,∴∠C+2∠C=90°,故∠C=30°=∠B,∴在Rt△OAC中,sin∠C==,∴OC=2OA,∵OA=OD,∴OD+CD=2OA,∴CD=OA=2,∵OB=OA,∴∠OAE=∠B=30°,∴在Rt△OAE中,sin∠OAE==,∴OA=2OE,∴OE=OA=,故答案為.【點(diǎn)睛】本題主要考查了圓周角定理,角的轉(zhuǎn)換,以及在直角三角形中的三角函數(shù)的運(yùn)用,解本題的要點(diǎn)在于求出OA的值,從而利用直角三角形的三角函數(shù)的運(yùn)用求出答案.14、a(b+3)(b﹣3).【解析】

根據(jù)提公因式,平方差公式,可得答案.【詳解】解:原式=a(b2﹣9)=a(b+3)(b﹣3),故答案為:a(b+3)(b﹣3).【點(diǎn)睛】本題考查了因式分解,一提,二套,三檢查,分解要徹底.15、【解析】

先根據(jù)非負(fù)數(shù)的性質(zhì)求出,,再由特殊角的三角函數(shù)值求出與的值,根據(jù)三角形內(nèi)角和定理即可得出結(jié)論.【詳解】在中,,,,,,,故答案為:.【點(diǎn)睛】本題考查了非負(fù)數(shù)的性質(zhì)以及特殊角的三角函數(shù)值,熟練掌握特殊角的三角函數(shù)值是解題的關(guān)鍵.16、200【解析】

先求出OA的長(zhǎng),再由垂徑定理求出AC的長(zhǎng),根據(jù)勾股定理求出OC的長(zhǎng),進(jìn)而可得出結(jié)論.【詳解】解:∵⊙O的直徑為1000mm,

∴OA=OA=500mm.

∵OD⊥AB,AB=800mm,

∴AC=400mm,

∴OC===300mm,∴CD=OD-OC=500-300=200(mm).

答:水的最大深度為200mm.故答案為:200【點(diǎn)睛】本題考查的是垂徑定理的應(yīng)用,根據(jù)勾股定理求出OC的長(zhǎng)是解答此題的關(guān)鍵.17、50【解析】

由CD是⊙O的直徑,弦AB⊥CD,根據(jù)垂徑定理的即可求得

=,又由圓周角定理,可得∠AOD=50°.【詳解】∵CD是⊙O的直徑,弦AB⊥CD,

∴=,

∵∠BCD=25°=,

∴∠AOD=2∠BCD=50°,

故答案為50【點(diǎn)睛】本題考查角度的求解,解題的關(guān)鍵是利用垂徑定理.18、(3,2).【解析】

過(guò)點(diǎn)P作PD⊥x軸于點(diǎn)D,連接OP,先由垂徑定理求出OD的長(zhǎng),再根據(jù)勾股定理求出PD的長(zhǎng),故可得出答案.【詳解】過(guò)點(diǎn)P作PD⊥x軸于點(diǎn)D,連接OP,∵A(6,0),PD⊥OA,∴OD=OA=3,在Rt△OPD中∵OP=OD=3,∴PD=2∴P(3,2).故答案為(3,2).【點(diǎn)睛】本題考查的是垂徑定理,根據(jù)題意作出輔助線,構(gòu)造出直角三角形是解答此題的關(guān)鍵.三、解答題:(本大題共9個(gè)小題,共78分,解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟.19、(1)詳見(jiàn)解析;(2)詳見(jiàn)解析.【解析】

(1)根據(jù)平行線的性質(zhì)結(jié)合角平分線的性質(zhì)可得出∠BCA=∠BAC,進(jìn)而可得出BA=BC,根據(jù)等角的余角相等結(jié)合等角對(duì)等邊,即可得出AB=BE,進(jìn)而可得出BE=BA=BC,此題得證;(2)根據(jù)AC2=DC?EC結(jié)合∠ACD=∠ECA可得出△ACD∽△ECA,根據(jù)相似三角形的性質(zhì)可得出∠ADC=∠EAC=90°,進(jìn)而可得出∠FDA=∠FAC=90°,結(jié)合∠AFD=∠CFA可得出△AFD∽△CFA,再利用相似三角形的性質(zhì)可證出AD:AF=AC:FC.【詳解】(1)∵DC∥AB,∴∠DCA=∠BAC.∵AC平分∠BCD,∴∠BCA=∠BAC=∠DCA,∴BA=BC.∵∠BAC+∠BAE=90°,∠ACB+∠E=90°,∴∠BAE=∠E,∴AB=BE,∴BE=BA=BC,∴B是EC的中點(diǎn);(2)∵AC2=DC?EC,∴.∵∠ACD=∠ECA,∴△ACD∽△ECA,∴∠ADC=∠EAC=90°,∴∠FDA=∠FAC=90°.又∵∠AFD=∠CFA,∴△AFD∽△CFA,∴AD:AF=AC:FC.【點(diǎn)睛】本題考查了相似三角形的判定與性質(zhì)、角平分線的性質(zhì)以及等腰三角形的性質(zhì),解題的關(guān)鍵是:(1)利用等角對(duì)等邊找出BA=BC、BE=BA;(2)利用相似三角形的判定定理找出△AFD∽△CFA.20、(1)y=;(2)(4,0)或(0,0)【解析】

(1)把x=1代入一次函數(shù)解析式求得A的坐標(biāo),利用待定系數(shù)法求得反比例函數(shù)解析式;(2)解一次函數(shù)與反比例函數(shù)解析式組成的方程組求得B的坐標(biāo),后利用△ABP的面積為8,可求P點(diǎn)坐標(biāo).【詳解】解:(1)把x=1代入y=2x﹣4,可得y=2×1﹣4=2,∴A(1,2),把(1,2)代入y=,可得k=1×2=6,∴反比例函數(shù)的解析式為y=;(2)根據(jù)題意可得:2x﹣4=,解得x1=1,x2=﹣1,把x2=﹣1,代入y=2x﹣4,可得y=﹣6,∴點(diǎn)B的坐標(biāo)為(﹣1,﹣6).設(shè)直線AB與x軸交于點(diǎn)C,y=2x﹣4中,令y=0,則x=2,即C(2,0),設(shè)P點(diǎn)坐標(biāo)為(x,0),則×|x﹣2|×(2+6)=8,解得x=4或0,∴點(diǎn)P的坐標(biāo)為(4,0)或(0,0).【點(diǎn)睛】本題主要考查用待定系數(shù)法求一次函數(shù)解析式,及一次函數(shù)與反比例函數(shù)交點(diǎn)的問(wèn)題,聯(lián)立兩函數(shù)可求解。21、(2)k≤;(2)-2.【解析】試題分析:(2)根據(jù)方程的系數(shù)結(jié)合根的判別式,即可得出△=﹣4k+5≥0,解之即可得出實(shí)數(shù)k的取值范圍;(2)由根與系數(shù)的關(guān)系可得x2+x2=2﹣2k、x2x2=k2﹣2,將其代入x22+x22=(x2+x2)2﹣2x2x2=26+x2x2中,解之即可得出k的值.試題解析:(2)∵關(guān)于x的方程x2+(2k﹣2)x+k2﹣2=0有兩個(gè)實(shí)數(shù)根x2,x2,∴△=(2k﹣2)2﹣4(k2﹣2)=﹣4k+5≥0,解得:k≤,∴實(shí)數(shù)k的取值范圍為k≤.(2)∵關(guān)于x的方程x2+(2k﹣2)x+k2﹣2=0有兩個(gè)實(shí)數(shù)根x2,x2,∴x2+x2=2﹣2k,x2x2=k2﹣2.∵x22+x22=(x2+x2)2﹣2x2x2=26+x2x2,∴(2﹣2k)2﹣2×(k2﹣2)=26+(k2﹣2),即k2﹣4k﹣22=0,解得:k=﹣2或k=6(不符合題意,舍去).∴實(shí)數(shù)k的值為﹣2.考點(diǎn):一元二次方程根與系數(shù)的關(guān)系,根的判別式.22、(1)BH為10米;(2)宣傳牌CD高約(40﹣20)米【解析】

(1)過(guò)B作DE的垂線,設(shè)垂足為G.分別在Rt△ABH中,通過(guò)解直角三角形求出BH、AH;

(2)在△ADE解直角三角形求出DE的長(zhǎng),進(jìn)而可求出EH即BG的長(zhǎng),在Rt△CBG中,∠CBG=45°,則CG=BG,由此可求出CG的長(zhǎng)然后根據(jù)CD=CG+GE-DE即可求出宣傳牌的高度.【詳解】(1)過(guò)B作BH⊥AE于H,Rt△ABH中,∠BAH=30°,∴BH=AB=×20=10(米),即點(diǎn)B距水平面AE的高度BH為10米;(2)過(guò)B作BG⊥DE于G,∵BH⊥HE,GE⊥HE,BG⊥DE,∴四邊形BHEG是矩形.∵由(1)得:BH=10,AH=10,∴BG=AH+AE=(10+30)米,Rt△BGC中,∠CBG=45°,∴CG=BG=(10+30)米,∴CE=CG+GE=CG+BH=10+30+10=10+40(米),在Rt△AED中,=tan∠DAE=tan60°=,DE=AE=30∴CD=CE﹣DE=10+40﹣30=40﹣20.答:宣傳牌CD高約(40﹣20)米.【點(diǎn)睛】本題考查解直角三角形的應(yīng)用-仰角俯角問(wèn)題和解直角三角形的應(yīng)用-坡度坡角問(wèn)題,解題的關(guān)鍵是掌握解直角三角形的應(yīng)用-仰角俯角問(wèn)題和解直角三角形的應(yīng)用-坡度坡角問(wèn)題的基本方法.23、(1)購(gòu)買(mǎi)A型學(xué)習(xí)用品400件,B型學(xué)習(xí)用品600件.(2)最多購(gòu)買(mǎi)B型學(xué)習(xí)用品1件【解析】

(1)設(shè)購(gòu)買(mǎi)A型學(xué)習(xí)用品x件,B型學(xué)習(xí)用品y件,就有x+y=1000,20x+30y=26000,由這兩個(gè)方程構(gòu)成方程組求出其解就可以得出結(jié)論.(2)設(shè)最多可以購(gòu)買(mǎi)B型產(chǎn)品a件,則A型產(chǎn)品(1000﹣a)件,根據(jù)這批學(xué)習(xí)用品的錢(qián)不超過(guò)210元建立不等式求出其解即可.【詳解】解:(1)設(shè)購(gòu)買(mǎi)A型學(xué)習(xí)用品x件,B型學(xué)習(xí)用品y件,由題意,得,解得:.答:購(gòu)買(mǎi)A型學(xué)習(xí)用品400件,B型學(xué)習(xí)用品600件.(2)設(shè)最多可以購(gòu)買(mǎi)B型產(chǎn)品a件,則A型產(chǎn)品(1000﹣a)件,由題意,得20(1000﹣a)+30a≤210,解得:a≤1.答:最多購(gòu)買(mǎi)B型學(xué)習(xí)用品1件24、【解析】

根據(jù)分式的化簡(jiǎn)方法先通分再約分,然后帶入求值.【詳解】解:當(dāng)時(shí),.【點(diǎn)睛】此題重點(diǎn)考查學(xué)生對(duì)分式的化簡(jiǎn)的應(yīng)用,掌握分式的化簡(jiǎn)方法是解題的關(guān)鍵.25、(I)(10,4)或(6,4)(II)C′(6,2)(III)①C′(8,4)②C′(,﹣)【解析】

(I)如圖①,當(dāng)OB∥AC′,四邊形OBC′A是平行四邊形,只要證明B、C′、D′共線即可解決問(wèn)題,再根據(jù)對(duì)稱性確定D″的坐標(biāo);(II)如圖②,當(dāng)α=60°時(shí),作C′K⊥AC于K.解直角三角形求出OK,C′K即可解決問(wèn)題;(III)分兩種情形分別求解即可解決問(wèn)題;【詳解】解:(I)如圖①,∵A(8,0),B(0,4),∴OB=4,OA=8,∵AC=OC=AC′=4,∴當(dāng)OB∥AC′,四邊形OBC′A是平行四邊形,∵∠AOB=90°,∴四邊形OBC′A是矩形,∴∠AC′B=90°,∵∠AC′D′=90°,∴B、C′、D′共線,∴BD′∥OA,∵AC=CO,BD=AD,∴CD=C′D′=OB=2,∴D′(10,4),根據(jù)對(duì)稱性可知,點(diǎn)D″在線段BC′上時(shí),D″(6,4)也滿足條件.綜上所

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論