版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
第第頁專題二函數(shù)與導(dǎo)數(shù)考點五年考情(2020-2024)命題趨勢考點01函數(shù)的單調(diào)性及其應(yīng)用2020年新高考Ⅱ卷:二次函數(shù)與對數(shù)函數(shù)復(fù)合;2021年新高考II卷:對數(shù)函數(shù)值比較大?。?023年新課標Ⅰ卷:二次函數(shù)與指數(shù)函數(shù)復(fù)合;2024年新課標Ⅰ卷:分段函數(shù)、指數(shù)函數(shù)、對數(shù)函數(shù);2024年新課標Ⅰ卷:抽象函數(shù);2024年新課標Ⅱ卷:對數(shù)函數(shù)1.以基本初等函數(shù)為載體,考查函數(shù)的單調(diào)性及其應(yīng)用;2.函數(shù)的奇偶性、對稱性與函數(shù)的圖像相結(jié)合加以考查.3.隨著高考改革的推進,題目的減少,抽象函數(shù)性質(zhì)的考查,以及函數(shù)性質(zhì)、導(dǎo)數(shù)的綜合考查將增多.考點02函數(shù)的奇偶性及其應(yīng)用2021年新高考I卷、2023年新高考II卷:由函數(shù)的奇偶性求參數(shù)考點03函數(shù)的單調(diào)性、奇偶性的綜合應(yīng)用2020年新高考Ⅰ卷:抽象函數(shù)解不等式考點04函數(shù)的奇偶性、周期性的綜合應(yīng)用2021年新高考II卷、2022年新高考II卷:抽象函數(shù)考點05:函數(shù)的綜合應(yīng)用2020年新高考Ⅰ卷:指數(shù)函數(shù)模型應(yīng)用問題;2024年新課標Ⅱ卷:函數(shù)圖像交點.考點06導(dǎo)數(shù)及其幾何意義2021年新高考II卷、2022年新高考I卷:導(dǎo)數(shù)概念、函數(shù)性質(zhì);2021年新高考II卷、2022年新高考II卷、2022年新高考II卷:導(dǎo)數(shù)幾何意義;2021年新高考I卷、2024年新課標Ⅰ卷:由切線求參數(shù);1.導(dǎo)數(shù)的概念與抽象函數(shù)的性質(zhì)綜合考查;2.導(dǎo)數(shù)幾何意義的應(yīng)用、切線問題;3.應(yīng)用導(dǎo)數(shù)研究函數(shù)的單調(diào)性或根據(jù)函數(shù)單調(diào)性求參數(shù)范圍;4.應(yīng)用導(dǎo)數(shù)求函數(shù)的極值、最值,或由極值(點)、最值求參數(shù)范圍;5.導(dǎo)數(shù)的綜合應(yīng)用問題,包括證明不等式、恒成立或存在性問題、零點及零點個數(shù),以及根據(jù)零點求參數(shù)范圍問題;6.小題綜合化有增強趨勢,解答題難度有降低趨勢,注重其它學(xué)科中應(yīng)用導(dǎo)數(shù)解決問題,突出七“工具性”.考點07導(dǎo)數(shù)與函數(shù)的單調(diào)性2022年新高考I卷:函數(shù)值比較大小.考點08導(dǎo)數(shù)與函數(shù)的極值、最值問題2021年新高考I卷、2023年新課標Ⅱ卷:最值;2023年新課標Ⅱ卷、2023年新課標Ⅱ卷、2024年新課標Ⅱ卷:極值、求參數(shù);2022年新高考I卷、2024年新課標Ⅰ卷、2023年新課標Ⅰ卷:極值等綜合;考點09應(yīng)用導(dǎo)數(shù)研究恒成立問題2020年新高考Ⅰ卷、2024年新課標Ⅰ卷:不等式恒成立、求參數(shù)范圍考點10應(yīng)用導(dǎo)數(shù)證明不等式2021年新高考I卷、2021年新高考II卷、2023年新課標Ⅰ卷:單個函數(shù)、雙變量不等式;2022年新高考II卷:單個函數(shù)、和不等式.考點11導(dǎo)數(shù)與函數(shù)的零點問題2022年新高考全國I卷:兩個函數(shù)與最值、等差數(shù)列等綜合;2024年新課標Ⅱ卷:多選題與極值等綜合.考點01函數(shù)的單調(diào)性及其應(yīng)用1.(2020年新高考全國卷Ⅱ數(shù)學(xué)試題)已知函數(shù)在上單調(diào)遞增,則的取值范圍是(
)A. B. C. D.【答案】D【分析】首先求出的定義域,然后求出的單調(diào)遞增區(qū)間即可.【詳解】由得或所以的定義域為因為在上單調(diào)遞增所以在上單調(diào)遞增所以故選:D2.(2021年全國新高考II卷數(shù)學(xué)試題)已知,,,則下列判斷正確的是(
)A. B. C. D.【答案】C【分析】對數(shù)函數(shù)的單調(diào)性可比較、與的大小關(guān)系,由此可得出結(jié)論.【詳解】,即.故選:C.3.(2023年新課標全國Ⅰ卷數(shù)學(xué)真題)設(shè)函數(shù)在區(qū)間上單調(diào)遞減,則的取值范圍是(
)A. B.C. D.【答案】D【分析】利用指數(shù)型復(fù)合函數(shù)單調(diào)性,判斷列式計算作答.【詳解】函數(shù)在R上單調(diào)遞增,而函數(shù)在區(qū)間上單調(diào)遞減,則有函數(shù)在區(qū)間上單調(diào)遞減,因此,解得,所以的取值范圍是.故選:D4.(2024年新課標全國Ⅰ卷數(shù)學(xué)真題)已知函數(shù)在R上單調(diào)遞增,則a的取值范圍是(
)A. B. C. D.【答案】B【分析】根據(jù)二次函數(shù)的性質(zhì)和分界點的大小關(guān)系即可得到不等式組,解出即可.【詳解】因為在上單調(diào)遞增,且時,單調(diào)遞增,則需滿足,解得,即a的范圍是.故選:B.5.(2024年新課標全國Ⅰ卷數(shù)學(xué)真題)已知函數(shù)的定義域為R,,且當(dāng)時,則下列結(jié)論中一定正確的是(
)A. B.C. D.【答案】B【分析】代入得到,再利用函數(shù)性質(zhì)和不等式的性質(zhì),逐漸遞推即可判斷.【詳解】因為當(dāng)時,所以,又因為,則,,,,,則依次下去可知,則B正確;且無證據(jù)表明ACD一定正確.故選:B.6.(2024年新課標全國Ⅱ卷數(shù)學(xué)真題)設(shè)函數(shù),若,則的最小值為(
)A. B. C. D.1【答案】C【分析】解法一:由題意可知:的定義域為,分類討論與的大小關(guān)系,結(jié)合符號分析判斷,即可得,代入可得最值;解法二:根據(jù)對數(shù)函數(shù)的性質(zhì)分析的符號,進而可得的符號,即可得,代入可得最值.【詳解】解法一:由題意可知:的定義域為,令解得;令解得;若,當(dāng)時,可知,此時,不合題意;若,當(dāng)時,可知,此時,不合題意;若,當(dāng)時,可知,此時;當(dāng)時,可知,此時;可知若,符合題意;若,當(dāng)時,可知,此時,不合題意;綜上所述:,即,則,當(dāng)且僅當(dāng)時,等號成立,所以的最小值為;解法二:由題意可知:的定義域為,令解得;令解得;則當(dāng)時,,故,所以;時,,故,所以;故,則,當(dāng)且僅當(dāng)時,等號成立,所以的最小值為.故選:C.考點02函數(shù)的奇偶性及其應(yīng)用7.(2021年全國新高考I卷數(shù)學(xué)試題)已知函數(shù)是偶函數(shù),則.【答案】1【分析】利用偶函數(shù)的定義可求參數(shù)的值.【詳解】因為,故,因為為偶函數(shù),故,時,整理得到,故,故答案為:18.(2023年新課標全國Ⅱ卷數(shù)學(xué)真題)若為偶函數(shù),則(
).A. B.0 C. D.1【答案】B【分析】根據(jù)偶函數(shù)性質(zhì),利用特殊值法求出值,再檢驗即可.【詳解】因為為偶函數(shù),則,解得,當(dāng)時,,,解得或,則其定義域為或,關(guān)于原點對稱.,故此時為偶函數(shù).故選:B.考點03函數(shù)的單調(diào)性、奇偶性的綜合應(yīng)用9.(2020年新高考全國卷Ⅰ數(shù)學(xué)試題)若定義在的奇函數(shù)f(x)在單調(diào)遞減,且f(2)=0,則滿足的x的取值范圍是(
)A. B.C. D.【答案】D【分析】首先根據(jù)函數(shù)奇偶性與單調(diào)性,得到函數(shù)在相應(yīng)區(qū)間上的符號,再根據(jù)兩個數(shù)的乘積大于等于零,分類轉(zhuǎn)化為對應(yīng)自變量不等式,最后求并集得結(jié)果.【詳解】因為定義在上的奇函數(shù)在上單調(diào)遞減,且,所以在上也是單調(diào)遞減,且,,所以當(dāng)時,,當(dāng)時,,所以由可得:或或解得或,所以滿足的的取值范圍是,故選:D.考點04函數(shù)的奇偶性、周期性的綜合應(yīng)用10.(2021年全國新高考II卷數(shù)學(xué)試題)已知函數(shù)的定義域為,為偶函數(shù),為奇函數(shù),則(
)A. B. C. D.【答案】B【分析】推導(dǎo)出函數(shù)是以為周期的周期函數(shù),由已知條件得出,結(jié)合已知條件可得出結(jié)論.【詳解】因為函數(shù)為偶函數(shù),則,可得,因為函數(shù)為奇函數(shù),則,所以,,所以,,即,故函數(shù)是以為周期的周期函數(shù),因為函數(shù)為奇函數(shù),則,故,其它三個選項未知.故選:B.11.(2022年新高考全國II卷數(shù)學(xué)真題)已知函數(shù)的定義域為R,且,則(
)A. B. C.0 D.1【答案】A【分析】法一:根據(jù)題意賦值即可知函數(shù)的一個周期為,求出函數(shù)一個周期中的的值,即可解出.【詳解】[方法一]:賦值加性質(zhì)因為,令可得,,所以,令可得,,即,所以函數(shù)為偶函數(shù),令得,,即有,從而可知,,故,即,所以函數(shù)的一個周期為.因為,,,,,所以一個周期內(nèi)的.由于22除以6余4,所以.故選:A.[方法二]:【最優(yōu)解】構(gòu)造特殊函數(shù)由,聯(lián)想到余弦函數(shù)和差化積公式,可設(shè),則由方法一中知,解得,取,所以,則,所以符合條件,因此的周期,,且,所以,由于22除以6余4,所以.故選:A.考點05函數(shù)的綜合應(yīng)用12.(2020年新高考全國卷Ⅰ數(shù)學(xué)試題)基本再生數(shù)R0與世代間隔T是新冠肺炎的流行病學(xué)基本參數(shù).基本再生數(shù)指一個感染者傳染的平均人數(shù),世代間隔指相鄰兩代間傳染所需的平均時間.在新冠肺炎疫情初始階段,可以用指數(shù)模型:描述累計感染病例數(shù)I(t)隨時間t(單位:天)的變化規(guī)律,指數(shù)增長率r與R0,T近似滿足R0=1+rT.有學(xué)者基于已有數(shù)據(jù)估計出R0=3.28,T=6.據(jù)此,在新冠肺炎疫情初始階段,累計感染病例數(shù)增加1倍需要的時間約為(ln2≈0.69)(
)A.1.2天 B.1.8天C.2.5天 D.3.5天【答案】B【分析】根據(jù)題意可得,設(shè)在新冠肺炎疫情初始階段,累計感染病例數(shù)增加1倍需要的時間為天,根據(jù),解得即可得結(jié)果.【詳解】因為,,,所以,所以,設(shè)在新冠肺炎疫情初始階段,累計感染病例數(shù)增加1倍需要的時間為天,則,所以,所以,所以天.故選:B.13.(2024年新課標全國Ⅱ卷數(shù)學(xué)真題)設(shè)函數(shù),,當(dāng)時,曲線與恰有一個交點,則(
)A. B. C.1 D.2【答案】D【分析】解法一:令,分析可知曲線與恰有一個交點,結(jié)合偶函數(shù)的對稱性可知該交點只能在y軸上,即可得,并代入檢驗即可;解法二:令,可知為偶函數(shù),根據(jù)偶函數(shù)的對稱性可知的零點只能為0,即可得,并代入檢驗即可.【詳解】解法一:令,即,可得,令,原題意等價于當(dāng)時,曲線與恰有一個交點,注意到均為偶函數(shù),可知該交點只能在y軸上,可得,即,解得,若,令,可得因為,則,當(dāng)且僅當(dāng)時,等號成立,可得,當(dāng)且僅當(dāng)時,等號成立,則方程有且僅有一個實根0,即曲線與恰有一個交點,所以符合題意;綜上所述:.解法二:令,原題意等價于有且僅有一個零點,因為,則為偶函數(shù),根據(jù)偶函數(shù)的對稱性可知的零點只能為0,即,解得,若,則,又因為當(dāng)且僅當(dāng)時,等號成立,可得,當(dāng)且僅當(dāng)時,等號成立,即有且僅有一個零點0,所以符合題意;故選:D.考點06導(dǎo)數(shù)及其幾何意義14.(2021年全國新高考I卷數(shù)學(xué)試題)若過點可以作曲線的兩條切線,則(
)A. B.C. D.【答案】D【分析】解法一:根據(jù)導(dǎo)數(shù)幾何意義求得切線方程,再構(gòu)造函數(shù),利用導(dǎo)數(shù)研究函數(shù)圖象,結(jié)合圖形確定結(jié)果;解法二:畫出曲線的圖象,根據(jù)直觀即可判定點在曲線下方和軸上方時才可以作出兩條切線.【詳解】在曲線上任取一點,對函數(shù)求導(dǎo)得,所以,曲線在點處的切線方程為,即,由題意可知,點在直線上,可得,令,則.當(dāng)時,,此時函數(shù)單調(diào)遞增,當(dāng)時,,此時函數(shù)單調(diào)遞減,所以,,由題意可知,直線與曲線的圖象有兩個交點,則,當(dāng)時,,當(dāng)時,,作出函數(shù)的圖象如下圖所示:
由圖可知,當(dāng)時,直線與曲線的圖象有兩個交點.故選:D.解法二:畫出函數(shù)曲線的圖象如圖所示,根據(jù)直觀即可判定點在曲線下方和軸上方時才可以作出兩條切線.由此可知.
故選:D.15.(多選)(2022年新高考全國II卷數(shù)學(xué)真題)已知函數(shù)的圖像關(guān)于點中心對稱,則(
)A.在區(qū)間單調(diào)遞減B.在區(qū)間有兩個極值點C.直線是曲線的對稱軸D.直線是曲線的切線【答案】AD【分析】根據(jù)三角函數(shù)的性質(zhì)逐個判斷各選項,即可解出.【詳解】由題意得:,所以,,即,又,所以時,,故.對A,當(dāng)時,,由正弦函數(shù)圖象知在上是單調(diào)遞減;對B,當(dāng)時,,由正弦函數(shù)圖象知只有1個極值點,由,解得,即為函數(shù)的唯一極值點;對C,當(dāng)時,,,直線不是對稱軸;對D,由得:,解得或,從而得:或,所以函數(shù)在點處的切線斜率為,切線方程為:即.故選:AD.16.(多選)(2022年新高考全國I卷數(shù)學(xué)真題)已知函數(shù)及其導(dǎo)函數(shù)的定義域均為,記,若,均為偶函數(shù),則(
)A. B. C. D.【答案】BC【分析】方法一:轉(zhuǎn)化題設(shè)條件為函數(shù)的對稱性,結(jié)合原函數(shù)與導(dǎo)函數(shù)圖象的關(guān)系,根據(jù)函數(shù)的性質(zhì)逐項判斷即可得解.【詳解】[方法一]:對稱性和周期性的關(guān)系研究對于,因為為偶函數(shù),所以即①,所以,所以關(guān)于對稱,則,故C正確;對于,因為為偶函數(shù),,,所以關(guān)于對稱,由①求導(dǎo),和,得,所以,所以關(guān)于對稱,因為其定義域為R,所以,結(jié)合關(guān)于對稱,從而周期,所以,,故B正確,D錯誤;若函數(shù)滿足題設(shè)條件,則函數(shù)(C為常數(shù))也滿足題設(shè)條件,所以無法確定的函數(shù)值,故A錯誤.故選:BC.[方法二]:【最優(yōu)解】特殊值,構(gòu)造函數(shù)法.由方法一知周期為2,關(guān)于對稱,故可設(shè),則,顯然A,D錯誤,選BC.故選:BC.[方法三]:因為,均為偶函數(shù),所以即,,所以,,則,故C正確;函數(shù),的圖象分別關(guān)于直線對稱,又,且函數(shù)可導(dǎo),所以,所以,所以,所以,,故B正確,D錯誤;若函數(shù)滿足題設(shè)條件,則函數(shù)(C為常數(shù))也滿足題設(shè)條件,所以無法確定的函數(shù)值,故A錯誤.故選:BC.17.(2024年新課標全國Ⅰ卷數(shù)學(xué)真題)若曲線在點處的切線也是曲線的切線,則.【答案】【分析】先求出曲線在的切線方程,再設(shè)曲線的切點為,求出,利用公切線斜率相等求出,表示出切線方程,結(jié)合兩切線方程相同即可求解.【詳解】由得,,故曲線在處的切線方程為;由得,設(shè)切線與曲線相切的切點為,由兩曲線有公切線得,解得,則切點為,切線方程為,根據(jù)兩切線重合,所以,解得.故答案為:18.(2022年新高考全國II卷數(shù)學(xué)真題)曲線過坐標原點的兩條切線的方程為,.【答案】【分析】分和兩種情況,當(dāng)時設(shè)切點為,求出函數(shù)的導(dǎo)函數(shù),即可求出切線的斜率,從而表示出切線方程,再根據(jù)切線過坐標原點求出,即可求出切線方程,當(dāng)時同理可得;【詳解】[方法一]:化為分段函數(shù),分段求分和兩種情況,當(dāng)時設(shè)切點為,求出函數(shù)導(dǎo)函數(shù),即可求出切線的斜率,從而表示出切線方程,再根據(jù)切線過坐標原點求出,即可求出切線方程,當(dāng)時同理可得;解:因為,當(dāng)時,設(shè)切點為,由,所以,所以切線方程為,又切線過坐標原點,所以,解得,所以切線方程為,即;當(dāng)時,設(shè)切點為,由,所以,所以切線方程為,又切線過坐標原點,所以,解得,所以切線方程為,即;故答案為:;[方法二]:根據(jù)函數(shù)的對稱性,數(shù)形結(jié)合當(dāng)時,設(shè)切點為,由,所以,所以切線方程為,又切線過坐標原點,所以,解得,所以切線方程為,即;因為是偶函數(shù),圖象為:所以當(dāng)時的切線,只需找到關(guān)于y軸的對稱直線即可.[方法三]:因為,當(dāng)時,設(shè)切點為,由,所以,所以切線方程為,又切線過坐標原點,所以,解得,所以切線方程為,即;當(dāng)時,設(shè)切點為,由,所以,所以切線方程為,又切線過坐標原點,所以,解得,所以切線方程為,即;故答案為:;.19.(2021年全國新高考II卷數(shù)學(xué)試題)寫出一個同時具有下列性質(zhì)①②③的函數(shù).①;②當(dāng)時,;③是奇函數(shù).【答案】(答案不唯一,均滿足)【分析】根據(jù)冪函數(shù)的性質(zhì)可得所求的.【詳解】取,則,滿足①,,時有,滿足②,的定義域為,又,故是奇函數(shù),滿足③.故答案為:(答案不唯一,均滿足)20.(2021年全國新高考II卷數(shù)學(xué)試題)已知函數(shù),函數(shù)的圖象在點和點的兩條切線互相垂直,且分別交y軸于M,N兩點,則取值范圍是.【答案】【分析】結(jié)合導(dǎo)數(shù)的幾何意義可得,結(jié)合直線方程及兩點間距離公式可得,,化簡即可得解.【詳解】由題意,,則,所以點和點,,所以,所以,所以,同理,所以.故答案為:考點07導(dǎo)數(shù)與函數(shù)的單調(diào)性21.(2022年新高考全國I卷數(shù)學(xué)真題)設(shè),則(
)A. B. C. D.【答案】C【分析】構(gòu)造函數(shù),導(dǎo)數(shù)判斷其單調(diào)性,由此確定的大小.【詳解】方法一:構(gòu)造法設(shè),因為,當(dāng)時,,當(dāng)時,所以函數(shù)在單調(diào)遞減,在上單調(diào)遞增,所以,所以,故,即,所以,所以,故,所以,故,設(shè),則,令,,當(dāng)時,,函數(shù)單調(diào)遞減,當(dāng)時,,函數(shù)單調(diào)遞增,又,所以當(dāng)時,,所以當(dāng)時,,函數(shù)單調(diào)遞增,所以,即,所以故選:C.方法二:比較法解:,,,①,令則,故在上單調(diào)遞減,可得,即,所以;②,令則,令,所以,所以在上單調(diào)遞增,可得,即,所以在上單調(diào)遞增,可得,即,所以故考點08導(dǎo)數(shù)與函數(shù)的極值、最值問題22.(2023年新課標全國Ⅱ卷數(shù)學(xué)真題)已知函數(shù)在區(qū)間上單調(diào)遞增,則a的最小值為(
).A. B.e C. D.【答案】C【分析】根據(jù)在上恒成立,再根據(jù)分參求最值即可求出.【詳解】依題可知,在上恒成立,顯然,所以,設(shè),所以,所以在上單調(diào)遞增,,故,即,即a的最小值為.故選:C.23.(多選)(2022年新高考全國I卷數(shù)學(xué)真題)已知函數(shù),則(
)A.有兩個極值點 B.有三個零點C.點是曲線的對稱中心 D.直線是曲線的切線【答案】AC【分析】利用極值點的定義可判斷A,結(jié)合的單調(diào)性、極值可判斷B,利用平移可判斷C;利用導(dǎo)數(shù)的幾何意義判斷D.【詳解】由題,,令得或,令得,所以在,上單調(diào)遞增,上單調(diào)遞減,所以是極值點,故A正確;因,,,所以,函數(shù)在上有一個零點,當(dāng)時,,即函數(shù)在上無零點,綜上所述,函數(shù)有一個零點,故B錯誤;令,該函數(shù)的定義域為,,則是奇函數(shù),是的對稱中心,將的圖象向上移動一個單位得到的圖象,所以點是曲線的對稱中心,故C正確;令,可得,又,當(dāng)切點為時,切線方程為,當(dāng)切點為時,切線方程為,故D錯誤.故選:AC.24.(多選)(2024年新課標全國Ⅰ卷數(shù)學(xué)真題)設(shè)函數(shù),則(
)A.是的極小值點 B.當(dāng)時,C.當(dāng)時, D.當(dāng)時,【答案】ACD【分析】求出函數(shù)的導(dǎo)數(shù),得到極值點,即可判斷A;利用函數(shù)的單調(diào)性可判斷B;根據(jù)函數(shù)在上的值域即可判斷C;直接作差可判斷D.【詳解】對A,因為函數(shù)的定義域為R,而,易知當(dāng)時,,當(dāng)或時,函數(shù)在上單調(diào)遞增,在上單調(diào)遞減,在上單調(diào)遞增,故是函數(shù)的極小值點,正確;對B,當(dāng)時,,所以,而由上可知,函數(shù)在上單調(diào)遞增,所以,錯誤;對C,當(dāng)時,,而由上可知,函數(shù)在上單調(diào)遞減,所以,即,正確;對D,當(dāng)時,,所以,正確;故選:ACD.25.(多選)(2023年新課標全國Ⅰ卷數(shù)學(xué)真題)已知函數(shù)的定義域為,,則(
).A. B.C.是偶函數(shù) D.為的極小值點【答案】ABC【分析】方法一:利用賦值法,結(jié)合函數(shù)奇偶性的判斷方法可判斷選項ABC,舉反例即可排除選項D.方法二:選項ABC的判斷與方法一同,對于D,可構(gòu)造特殊函數(shù)進行判斷即可.【詳解】方法一:因為,對于A,令,,故正確.對于B,令,,則,故B正確.對于C,令,,則,令,又函數(shù)的定義域為,所以為偶函數(shù),故正確,對于D,不妨令,顯然符合題設(shè)條件,此時無極值,故錯誤.方法二:因為,對于A,令,,故正確.對于B,令,,則,故B正確.對于C,令,,則,令,又函數(shù)的定義域為,所以為偶函數(shù),故正確,對于D,當(dāng)時,對兩邊同時除以,得到,故可以設(shè),則,當(dāng)肘,,則,令,得;令,得;故在上單調(diào)遞減,在上單調(diào)遞增,因為為偶函數(shù),所以在上單調(diào)遞增,在上單調(diào)遞減,
顯然,此時是的極大值,故D錯誤.故選:.26.(多選)(2023年新課標全國Ⅱ卷數(shù)學(xué)真題)若函數(shù)既有極大值也有極小值,則(
).A. B. C. D.【答案】BCD【分析】求出函數(shù)的導(dǎo)數(shù),由已知可得在上有兩個變號零點,轉(zhuǎn)化為一元二次方程有兩個不等的正根判斷作答.【詳解】函數(shù)的定義域為,求導(dǎo)得,因為函數(shù)既有極大值也有極小值,則函數(shù)在上有兩個變號零點,而,因此方程有兩個不等的正根,于是,即有,,,顯然,即,A錯誤,BCD正確.故選:BCD27.(2021年全國新高考I卷數(shù)學(xué)試題)函數(shù)的最小值為.【答案】1【分析】由解析式知定義域為,討論、、,并結(jié)合導(dǎo)數(shù)研究的單調(diào)性,即可求最小值.【詳解】由題設(shè)知:定義域為,∴當(dāng)時,,此時單調(diào)遞減;當(dāng)時,,有,此時單調(diào)遞減;當(dāng)時,,有,此時單調(diào)遞增;又在各分段的界點處連續(xù),∴綜上有:時,單調(diào)遞減,時,單調(diào)遞增;∴故答案為:1.28.(2023年新課標全國Ⅱ卷數(shù)學(xué)真題)(1)證明:當(dāng)時,;(2)已知函數(shù),若是的極大值點,求a的取值范圍.【答案】(1)證明見詳解(2)【分析】(1)分別構(gòu)建,,求導(dǎo),利用導(dǎo)數(shù)判斷原函數(shù)的單調(diào)性,進而可得結(jié)果;(2)根據(jù)題意結(jié)合偶函數(shù)的性質(zhì)可知只需要研究在上的單調(diào)性,求導(dǎo),分類討論和,結(jié)合(1)中的結(jié)論放縮,根據(jù)極大值的定義分析求解.【詳解】(1)構(gòu)建,則對恒成立,則在上單調(diào)遞增,可得,所以;構(gòu)建,則,構(gòu)建,則對恒成立,則在上單調(diào)遞增,可得,即對恒成立,則在上單調(diào)遞增,可得,所以;綜上所述:.(2)令,解得,即函數(shù)的定義域為,若,則,因為在定義域內(nèi)單調(diào)遞減,在上單調(diào)遞增,在上單調(diào)遞減,則在上單調(diào)遞減,在上單調(diào)遞增,故是的極小值點,不合題意,所以.當(dāng)時,令因為,且,所以函數(shù)在定義域內(nèi)為偶函數(shù),由題意可得:,(i)當(dāng)時,取,,則,由(1)可得,且,所以,即當(dāng)時,,則在上單調(diào)遞增,結(jié)合偶函數(shù)的對稱性可知:在上單調(diào)遞減,所以是的極小值點,不合題意;(ⅱ)當(dāng)時,取,則,由(1)可得,構(gòu)建,則,且,則對恒成立,可知在上單調(diào)遞增,且,所以在內(nèi)存在唯一的零點,當(dāng)時,則,且,則,即當(dāng)時,,則在上單調(diào)遞減,結(jié)合偶函數(shù)的對稱性可知:在上單調(diào)遞增,所以是的極大值點,符合題意;綜上所述:,即,解得或,故a的取值范圍為.29.(2024年新課標全國Ⅱ卷數(shù)學(xué)真題)已知函數(shù).(1)當(dāng)時,求曲線在點處的切線方程;(2)若有極小值,且極小值小于0,求a的取值范圍.【答案】(1)(2)【分析】(1)求導(dǎo),結(jié)合導(dǎo)數(shù)的幾何意義求切線方程;(2)解法一:求導(dǎo),分析和兩種情況,利用導(dǎo)數(shù)判斷單調(diào)性和極值,分析可得,構(gòu)建函數(shù)解不等式即可;解法二:求導(dǎo),可知有零點,可得,進而利用導(dǎo)數(shù)求的單調(diào)性和極值,分析可得,構(gòu)建函數(shù)解不等式即可.【詳解】(1)當(dāng)時,則,,可得,,即切點坐標為,切線斜率,所以切線方程為,即.(2)解法一:因為的定義域為,且,若,則對任意恒成立,可知在上單調(diào)遞增,無極值,不合題意;若,令,解得;令,解得;可知在內(nèi)單調(diào)遞減,在內(nèi)單調(diào)遞增,則有極小值,無極大值,由題意可得:,即,構(gòu)建,則,可知在內(nèi)單調(diào)遞增,且,不等式等價于,解得,所以a的取值范圍為;解法二:因為的定義域為,且,若有極小值,則有零點,令,可得,可知與有交點,則,若,令,解得;令,解得;可知在內(nèi)單調(diào)遞減,在內(nèi)單調(diào)遞增,則有極小值,無極大值,符合題意,由題意可得:,即,構(gòu)建,因為則在內(nèi)單調(diào)遞增,可知在內(nèi)單調(diào)遞增,且,不等式等價于,解得,所以a的取值范圍為.考點09應(yīng)用導(dǎo)數(shù)研究恒成立問題30.(2020年新高考全國卷Ⅰ數(shù)學(xué)試題)已知函數(shù).(1)當(dāng)時,求曲線在點處的切線與兩坐標軸圍成的三角形的面積;(2)若不等式恒成立,求a的取值范圍.【答案】(1)(2)【分析】(1)利用導(dǎo)數(shù)的幾何意義求出在點切線方程,即可得到坐標軸交點坐標,最后根據(jù)三角形面積公式得結(jié)果;(2)方法一:利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,當(dāng)a=1時,由得,符合題意;當(dāng)a>1時,可證,從而存在零點,使得,得到,利用零點的條件,結(jié)合指數(shù)對數(shù)的運算化簡后,利用基本不等式可以證得恒成立;當(dāng)時,研究.即可得到不符合題意.綜合可得a的取值范圍.【詳解】(1),,.,∴切點坐標為(1,1+e),∴函數(shù)在點(1,f(1)處的切線方程為,即,切線與坐標軸交點坐標分別為,∴所求三角形面積為.(2)[方法一]:通性通法,,且.設(shè),則∴g(x)在上單調(diào)遞增,即在上單調(diào)遞增,當(dāng)時,,∴,∴成立.當(dāng)時,,,,∴存在唯一,使得,且當(dāng)時,當(dāng)時,,,因此>1,∴∴恒成立;當(dāng)時,∴不是恒成立.綜上所述,實數(shù)a的取值范圍是[1,+∞).[方法二]【最優(yōu)解】:同構(gòu)由得,即,而,所以.令,則,所以在R上單調(diào)遞增.由,可知,所以,所以.令,則.所以當(dāng)時,單調(diào)遞增;當(dāng)時,單調(diào)遞減.所以,則,即.所以a的取值范圍為.[方法三]:換元同構(gòu)由題意知,令,所以,所以.于是.由于,而在時為增函數(shù),故,即,分離參數(shù)后有.令,所以.當(dāng)時,單調(diào)遞增;當(dāng)時,單調(diào)遞減.所以當(dāng)時,取得最大值為.所以.[方法四]:因為定義域為,且,所以,即.令,則,所以在區(qū)間內(nèi)單調(diào)遞增.因為,所以時,有,即.下面證明當(dāng)時,恒成立.令,只需證當(dāng)時,恒成立.因為,所以在區(qū)間內(nèi)單調(diào)遞增,則.因此要證明時,恒成立,只需證明即可.由,得.上面兩個不等式兩邊相加可得,故時,恒成立.當(dāng)時,因為,顯然不滿足恒成立.所以a的取值范圍為.31.(2024年新課標全國Ⅰ卷數(shù)學(xué)真題)已知函數(shù)(1)若,且,求的最小值;(2)證明:曲線是中心對稱圖形;(3)若當(dāng)且僅當(dāng),求的取值范圍.【答案】(1)(2)證明見解析(3)【分析】(1)求出后根據(jù)可求的最小值;(2)設(shè)為圖象上任意一點,可證關(guān)于的對稱點為也在函數(shù)的圖像上,從而可證對稱性;(3)根據(jù)題設(shè)可判斷即,再根據(jù)在上恒成立可求得.【詳解】(1)時,,其中,則,因為,當(dāng)且僅當(dāng)時等號成立,故,而成立,故即,所以的最小值為.,(2)的定義域為,設(shè)為圖象上任意一點,關(guān)于的對稱點為,因為在圖象上,故,而,,所以也在圖象上,由的任意性可得圖象為中心對稱圖形,且對稱中心為.(3)因為當(dāng)且僅當(dāng),故為的一個解,所以即,先考慮時,恒成立.此時即為在上恒成立,設(shè),則在上恒成立,設(shè),則,當(dāng),,故恒成立,故在上為增函數(shù),故即在上恒成立.當(dāng)時,,故恒成立,故在上為增函數(shù),故即在上恒成立.當(dāng),則當(dāng)時,故在上為減函數(shù),故,不合題意,舍;綜上,在上恒成立時.而當(dāng)時,而時,由上述過程可得在遞增,故的解為,即的解為.綜上,.考點10應(yīng)用導(dǎo)數(shù)證明不等式32.(2021年全國新高考I卷數(shù)學(xué)試題)已知函數(shù).(1)討論的單調(diào)性;(2)設(shè),為兩個不相等的正數(shù),且,證明:.【答案】(1)的遞增區(qū)間為,遞減區(qū)間為;(2)證明見解析.【分析】(1)首先確定函數(shù)的定義域,然后求得導(dǎo)函數(shù)的解析式,由導(dǎo)函數(shù)的符號即可確定原函數(shù)的單調(diào)性.(2)方法二:將題中的等式進行恒等變換,令,命題轉(zhuǎn)換為證明:,然后構(gòu)造對稱差函數(shù),結(jié)合函數(shù)零點的特征和函數(shù)的單調(diào)性即可證得題中的結(jié)論.【詳解】(1)的定義域為.由得,,當(dāng)時,;當(dāng)時;當(dāng)時,.故在區(qū)間內(nèi)為增函數(shù),在區(qū)間內(nèi)為減函數(shù),(2)[方法一]:等價轉(zhuǎn)化由得,即.由,得.由(1)不妨設(shè),則,從而,得,①令,則,當(dāng)時,,在區(qū)間內(nèi)為減函數(shù),,從而,所以,由(1)得即.①令,則,當(dāng)時,,在區(qū)間內(nèi)為增函數(shù),,從而,所以.又由,可得,所以.②由①②得.[方法二]【最優(yōu)解】:變形為,所以.令.則上式變?yōu)椋谑敲}轉(zhuǎn)換為證明:.令,則有,不妨設(shè).由(1)知,先證.要證:.令,則,在區(qū)間內(nèi)單調(diào)遞增,所以,即.再證.因為,所以需證.令,所以,故在區(qū)間內(nèi)單調(diào)遞增.所以.故,即.綜合可知.[方法三]:比值代換證明同證法2.以下證明.不妨設(shè),則,由得,,要證,只需證,兩邊取對數(shù)得,即,即證.記,則.記,則,所以,在區(qū)間內(nèi)單調(diào)遞減.,則,所以在區(qū)間內(nèi)單調(diào)遞減.由得,所以,即.[方法四]:構(gòu)造函數(shù)法由已知得,令,不妨設(shè),所以.由(Ⅰ)知,,只需證.證明同證法2.再證明.令.令,則.所以,在區(qū)間內(nèi)單調(diào)遞增.因為,所以,即又因為,所以,即.因為,所以,即.綜上,有結(jié)論得證.33.(2021年全國新高考II卷數(shù)學(xué)試題)已知函數(shù).(1)討論的單調(diào)性;(2)從下面兩個條件中選一個,證明:只有一個零點①;②.【答案】(1)答案見解析;(2)證明見解析.【分析】(1)首先求得導(dǎo)函數(shù)的解析式,然后分類討論確定函數(shù)的單調(diào)性即可;(2)由題意結(jié)合(1)中函數(shù)的單調(diào)性和函數(shù)零點存在定理即可證得題中的結(jié)論.【詳解】(1)由函數(shù)的解析式可得:,當(dāng)時,若,則單調(diào)遞減,若,則單調(diào)遞增;當(dāng)時,若,則單調(diào)遞增,若,則單調(diào)遞減,若,則單調(diào)遞增;當(dāng)時,在上單調(diào)遞增;當(dāng)時,若,則單調(diào)遞增,若,則單調(diào)遞減,若,則單調(diào)遞增;(2)若選擇條件①:由于,故,則,而,而函數(shù)在區(qū)間上單調(diào)遞增,故函數(shù)在區(qū)間上有一個零點.,由于,,故,結(jié)合函數(shù)的單調(diào)性可知函數(shù)在區(qū)間上沒有零點.綜上可得,題中的結(jié)論成立.若選擇條件②:由于,故,則,當(dāng)時,,,而函數(shù)在區(qū)間上單調(diào)遞增,故函數(shù)在區(qū)間上有一個零點.當(dāng)時,構(gòu)造函數(shù),則,當(dāng)時,單調(diào)遞減,當(dāng)時,單調(diào)遞增,注意到,故恒成立,從而有:,此時:,當(dāng)時,,取,則,即:,而函數(shù)在區(qū)間上單調(diào)遞增,故函數(shù)在區(qū)間上有一個零點.,由于,,故,結(jié)合函數(shù)的單調(diào)性可知函數(shù)在區(qū)間上沒有零點.綜上可得,題中的結(jié)論成立.34.(2023年新課標全國Ⅰ卷數(shù)學(xué)真題)已知函數(shù).(1)討論的單調(diào)性;(2)證明:當(dāng)時,.【答案】(1)答案見解析(2)證明見解析【分析】(1)先求導(dǎo),再分類討論與兩種情況,結(jié)合導(dǎo)數(shù)與函數(shù)單調(diào)性的關(guān)系即可得解;(2)方法一:結(jié)合(1)中結(jié)論,將問題轉(zhuǎn)化為的恒成立問題,構(gòu)造函數(shù),利用導(dǎo)數(shù)證得即可.方法二:構(gòu)造函數(shù),證得,從而得到,進而將問題轉(zhuǎn)化為的恒成立問題,由此得證.【詳解】(1)因為,定義域為,所以,當(dāng)時,由于,則,故恒成立,所以在上單調(diào)遞減;當(dāng)時,令,解得,當(dāng)時,,則在上單調(diào)遞減;當(dāng)時,,則在上單調(diào)遞增;綜上:當(dāng)時,在上單調(diào)遞減;當(dāng)時,在上單調(diào)遞減,在上單調(diào)遞增.(2)方法一:由(1)得,,要證,即證,即證恒成立,令,則,令,則;令,則;所以在上單調(diào)遞減,在上單調(diào)遞增,所以,則恒成立,所以當(dāng)時,恒成立,證畢.方法二:令,則,由于在上單調(diào)遞增,所以在上單調(diào)遞增,又,所以當(dāng)時,;當(dāng)時,;所以在上單調(diào)遞減,在上單調(diào)遞增,故,則,當(dāng)且僅當(dāng)時,等號成立,因為,當(dāng)且僅當(dāng),即時,等號成立,所以要證,即證,即證,令,則,令,則;令,則;所以在上單調(diào)遞減,在上單調(diào)遞增,所以,則恒成立,所以當(dāng)時,恒成立,證畢.35.(2022年新高考全國II卷數(shù)學(xué)真題)已知函數(shù).(1)當(dāng)時,討論的單調(diào)性;(2)當(dāng)時,,求a的取值范圍;(3)設(shè),證明:.【答案】(1)的減區(qū)間為,增區(qū)間為.(2)(3)見解析【分析】(1)求出,討論其符號后可得的單調(diào)性.(2)設(shè),求出,先討論時題設(shè)中的不等式不成立,再就結(jié)合放縮法討論符號,最后就結(jié)合放縮法討論的范圍后可得參數(shù)的取值范圍.(3)由(2)可得對任意的恒成立,從而可得對任意的恒成立,結(jié)合裂項相消法可證題設(shè)中的不等式.【詳解】(1)當(dāng)時,,則,當(dāng)時,,當(dāng)時,,故的減區(qū)間為,增區(qū)間為.(2)設(shè),則,又,設(shè),則,若,則,因為為連續(xù)不間斷函數(shù),故存在,使得,總有,故在為增函數(shù),故,故在為增函數(shù),故,與題設(shè)矛盾.若,則,下證:對任意,總有成立,證明:設(shè),故,故在上為減函數(shù),故即成立.由上述不等式有,故總成立,即在上為減函數(shù),所以.當(dāng)時,有,
所以在上為減函數(shù),所以.綜上,.(3)取,則,總有成立,令,則,故即對任意的恒成立.所以對任意的,有,整理得到:,故,故不等式成立.考點11導(dǎo)數(shù)與函數(shù)的零點問題36.(2024年新課標全國Ⅱ卷數(shù)學(xué)真題)設(shè)函數(shù),則(
)A.當(dāng)時,有三個零點B.當(dāng)時,是的極大值點C.存在a,b,使得為曲線的對稱軸D.存在a,使得點為曲線的對稱中心【答案】AD【分析】A選項,先分析出函數(shù)的極值點為,根據(jù)零點存在定理和極值的符號判斷出在上各有一個零點;B選項,根據(jù)極值和導(dǎo)函數(shù)符號的關(guān)系進行分析;C選項,假設(shè)存在這樣的,使得為的對稱軸,則為恒等式,據(jù)此計算判斷;D選項,若存在這樣的,使得為的對稱中心,則,據(jù)此進行計算判斷,亦可利用拐點結(jié)論直接求解.【詳解】A選項,,由于,故時,故在上單調(diào)遞增,時,,單調(diào)遞減,則在處取到極大值,在處取到極小值,由,,則,根據(jù)零點存在定理在上有一個零點,又,,則,則在上各有一個零點,于是時,有三個零點,A選項正確;B選項,,時,,單調(diào)遞減,時,單調(diào)遞增,此時在處取到極小值,B選項錯誤;C選項,假設(shè)存在這樣的,使得為的對稱軸,即存在這樣的使得,即,根據(jù)二項式定理,等式右邊展開式含有的項為,于是等式左右兩邊的系數(shù)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年渭南市“縣管鎮(zhèn)聘村用”專項醫(yī)療人才招聘41人備考題庫及參考答案詳解一套
- 2025年河南省工業(yè)和備考題庫化廳許昌無線電中心公開招聘工作人員備考題庫及答案詳解1套
- 2025年南寧市社會保障卡管理辦公室招聘工作人員備考題庫及完整答案詳解一套
- 2025年廈門市公安局思明分局招聘警務(wù)輔助人員備考題庫帶答案詳解
- 2025年安丘市青云文旅發(fā)展集團有限公司招聘5人備考題庫及1套完整答案詳解
- 2025年中國水科院國際合作處招聘備考題庫附答案詳解
- 文安鋼鐵校招面試題目及答案
- 消防排煙拆除方案范本
- 萬達集團招聘面試題及答案
- 通州建總集團招聘題庫及答案
- 電大??啤豆芾碛⒄Z1》歷年期末考試試題及答案匯編
- 2023年日喀則市政務(wù)中心綜合窗口人員招聘筆試模擬試題及答案解析
- GB/T 3001-2017耐火材料常溫抗折強度試驗方法
- GB/T 19809-2005塑料管材和管件聚乙烯(PE)管材/管材或管材/管件熱熔對接組件的制備
- 體質(zhì)中醫(yī)基礎(chǔ)理論課件
- 調(diào)試報告-交換機
- 電力工程檢驗批質(zhì)量驗收記錄【完整版】
- 2022年中學(xué)教代會代表選舉產(chǎn)生辦法
- 五年制診斷學(xué)水腫血尿等
- 美國飲食文化PPT-小學(xué)生用
- 建筑結(jié)構(gòu)鑒定和加固技術(shù)講義
評論
0/150
提交評論