版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
2022-2023學年高三上數(shù)學期末模擬試卷注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.若滿足約束條件則的最大值為()A.10 B.8 C.5 D.32.高斯是德國著名的數(shù)學家,近代數(shù)學奠基者之一,享有“數(shù)學王子”的稱號,用其名字命名的“高斯函數(shù)”為:設,用表示不超過的最大整數(shù),則稱為高斯函數(shù),例如:,,已知函數(shù)(),則函數(shù)的值域為()A. B. C. D.3.在直角梯形中,,,,,點為上一點,且,當?shù)闹底畲髸r,()A. B.2 C. D.4.設a=log73,,c=30.7,則a,b,c的大小關系是()A. B. C. D.5.下列不等式正確的是()A. B.C. D.6.已知雙曲線,過原點作一條傾斜角為直線分別交雙曲線左、右兩支P,Q兩點,以線段PQ為直徑的圓過右焦點F,則雙曲線離心率為A. B. C.2 D.7.已知集合.為自然數(shù)集,則下列表示不正確的是()A. B. C. D.8.在空間直角坐標系中,四面體各頂點坐標分別為:.假設螞蟻窩在點,一只螞蟻從點出發(fā),需要在,上分別任意選擇一點留下信息,然后再返回點.那么完成這個工作所需要走的最短路徑長度是()A. B. C. D.9.已知、是雙曲線的左右焦點,過點與雙曲線的一條漸近線平行的直線交雙曲線另一條漸近線于點,若點在以線段為直徑的圓外,則雙曲線離心率的取值范圍是()A. B. C. D.10.已知向量,,且與的夾角為,則()A. B.1 C.或1 D.或911.已知直線:與圓:交于,兩點,與平行的直線與圓交于,兩點,且與的面積相等,給出下列直線:①,②,③,④.其中滿足條件的所有直線的編號有()A.①② B.①④ C.②③ D.①②④12.《九章算術》勾股章有一“引葭赴岸”問題“今有餅池徑丈,葭生其中,出水兩尺,引葭赴岸,適與岸齊,問水深,葭各幾何?”,其意思是:有一個直徑為一丈的圓柱形水池,池中心生有一顆類似蘆葦?shù)闹参铮冻鏊鎯沙?,若把它引向岸邊,正好與岸邊齊,問水有多深,該植物有多高?其中一丈等于十尺,如圖若從該葭上隨機取一點,則該點取自水下的概率為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.(5分)國家禁毒辦于2019年11月5日至12月15日在全國青少年毒品預防教育數(shù)字化網(wǎng)絡平臺上開展2019年全國青少年禁毒知識答題活動,活動期間進入答題專區(qū),點擊“開始答題”按鈕后,系統(tǒng)自動生成20道題.已知某校高二年級有甲、乙、丙、丁、戊五位同學在這次活動中答對的題數(shù)分別是,則這五位同學答對題數(shù)的方差是____________.14.執(zhí)行以下語句后,打印紙上打印出的結果應是:_____.15.的展開式中的常數(shù)項為__________.16.在正方體中,已知點在直線上運動,則下列四個命題中:①三棱錐的體積不變;②;③當為中點時,二面角的余弦值為;④若正方體的棱長為2,則的最小值為;其中說法正確的是____________(寫出所有說法正確的編號)三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)某超市計劃按月訂購一種酸奶,每天進貨量相同,進貨成本每瓶4元,售價每瓶6元,未售出的酸奶降價處理,以每瓶2元的價格當天全部處理完.根據(jù)往年銷售經(jīng)驗,每天需求量與當天最高氣溫(單位:℃)有關.如果最高氣溫不低于25,需求量為500瓶;如果最高氣溫位于區(qū)間[20,25),需求量為300瓶;如果最高氣溫低于20,需求量為200瓶.為了確定六月份的訂購計劃,統(tǒng)計了前三年六月份各天的最高氣溫數(shù)據(jù),得下面的頻數(shù)分布表:最高氣溫[10,15)[15,20)[20,25)[25,30)[30,35)[35,40)天數(shù)216362574以最高氣溫位于各區(qū)間的頻率估計最高氣溫位于該區(qū)間的概率.(1)求六月份這種酸奶一天的需求量不超過300瓶的概率;(2)設六月份一天銷售這種酸奶的利潤為Y(單位:元),當六月份這種酸奶一天的進貨量為450瓶時,寫出Y的所有可能值,并估計Y大于零的概率.18.(12分)選修4-5:不等式選講設函數(shù).(1)當時,求不等式的解集;(2)若在上恒成立,求實數(shù)的取值范圍.19.(12分)如圖,四棱錐中,底面是矩形,面底面,且是邊長為的等邊三角形,在上,且面.(1)求證:是的中點;(2)在上是否存在點,使二面角為直角?若存在,求出的值;若不存在,說明理由.20.(12分)已知命題:,;命題:函數(shù)無零點.(1)若為假,求實數(shù)的取值范圍;(2)若為假,為真,求實數(shù)的取值范圍.21.(12分)某企業(yè)原有甲、乙兩條生產(chǎn)線,為了分析兩條生產(chǎn)線的效果,先從兩條生產(chǎn)線生產(chǎn)的大量產(chǎn)品中各抽取了100件產(chǎn)品作為樣本,檢測一項質(zhì)量指標值.該項指標值落在內(nèi)的產(chǎn)品視為合格品,否則為不合格品.乙生產(chǎn)線樣本的頻數(shù)分布表質(zhì)量指標合計頻數(shù)2184814162100(1)根據(jù)甲生產(chǎn)線樣本的頻率分布直方圖,以從樣本中任意抽取一件產(chǎn)品且為合格品的頻率近似代替從甲生產(chǎn)線生產(chǎn)的產(chǎn)品中任意抽取一件產(chǎn)品且為合格品的概率,估計從甲生產(chǎn)線生產(chǎn)的產(chǎn)品中任取5件恰有2件為合格品的概率;(2)現(xiàn)在該企業(yè)為提高合格率欲只保留其中一條生產(chǎn)線,根據(jù)上述圖表所提供的數(shù)據(jù),完成下面的列聯(lián)表,并判斷是否有90%把握認為該企業(yè)生產(chǎn)的這種產(chǎn)品的質(zhì)量指標值與生產(chǎn)線有關?若有90%把握,請從合格率的角度分析保留哪條生產(chǎn)線較好?甲生產(chǎn)線乙生產(chǎn)線合計合格品不合格品合計附:,.0.1500.1000.0500.0250.0100.0052.0722.7063.8415.0246.6357.87922.(10分)已知奇函數(shù)的定義域為,且當時,.(1)求函數(shù)的解析式;(2)記函數(shù),若函數(shù)有3個零點,求實數(shù)的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】
畫出可行域,將化為,通過平移即可判斷出最優(yōu)解,代入到目標函數(shù),即可求出最值.【詳解】解:由約束條件作出可行域如圖,化目標函數(shù)為直線方程的斜截式,.由圖可知當直線過時,直線在軸上的截距最大,有最大值為3.故選:D.【點睛】本題考查了線性規(guī)劃問題.一般第一步畫出可行域,然后將目標函數(shù)轉化為的形式,在可行域內(nèi)通過平移找到最優(yōu)解,將最優(yōu)解帶回到目標函數(shù)即可求出最值.注意畫可行域時,邊界線的虛實問題.2、B【解析】
利用換元法化簡解析式為二次函數(shù)的形式,根據(jù)二次函數(shù)的性質(zhì)求得的取值范圍,由此求得的值域.【詳解】因為(),所以,令(),則(),函數(shù)的對稱軸方程為,所以,,所以,所以的值域為.故選:B【點睛】本小題考查函數(shù)的定義域與值域等基礎知識,考查學生分析問題,解決問題的能力,運算求解能力,轉化與化歸思想,換元思想,分類討論和應用意識.3、B【解析】
由題,可求出,所以,根據(jù)共線定理,設,利用向量三角形法則求出,結合題給,得出,進而得出,最后利用二次函數(shù)求出的最大值,即可求出.【詳解】由題意,直角梯形中,,,,,可求得,所以·∵點在線段上,設,則,即,又因為所以,所以,當時,等號成立.所以.故選:B.【點睛】本題考查平面向量線性運算中的加法運算、向量共線定理,以及運用二次函數(shù)求最值,考查轉化思想和解題能力.4、D【解析】
,,得解.【詳解】,,,所以,故選D【點睛】比較不同數(shù)的大小,找中間量作比較是一種常見的方法.5、D【解析】
根據(jù),利用排除法,即可求解.【詳解】由,可排除A、B、C選項,又由,所以.故選D.【點睛】本題主要考查了三角函數(shù)的圖象與性質(zhì),以及對數(shù)的比較大小問題,其中解答熟記三角函數(shù)與對數(shù)函數(shù)的性質(zhì)是解答的關鍵,著重考查了推理與運算能力,屬于基礎題.6、B【解析】
求得直線的方程,聯(lián)立直線的方程和雙曲線的方程,求得兩點坐標的關系,根據(jù)列方程,化簡后求得離心率.【詳解】設,依題意直線的方程為,代入雙曲線方程并化簡得,故,設焦點坐標為,由于以為直徑的圓經(jīng)過點,故,即,即,即,兩邊除以得,解得.故,故選B.【點睛】本小題主要考查直線和雙曲線的交點,考查圓的直徑有關的幾何性質(zhì),考查運算求解能力,屬于中檔題.7、D【解析】
集合.為自然數(shù)集,由此能求出結果.【詳解】解:集合.為自然數(shù)集,在A中,,正確;在B中,,正確;在C中,,正確;在D中,不是的子集,故D錯誤.故選:D.【點睛】本題考查命題真假的判斷、元素與集合的關系、集合與集合的關系等基礎知識,考查運算求解能力,是基礎題.8、C【解析】
將四面體沿著劈開,展開后最短路徑就是的邊,在中,利用余弦定理即可求解.【詳解】將四面體沿著劈開,展開后如下圖所示:最短路徑就是的邊.易求得,由,知,由余弦定理知其中,∴故選:C【點睛】本題考查了余弦定理解三角形,需熟記定理的內(nèi)容,考查了學生的空間想象能力,屬于中檔題.9、A【解析】雙曲線﹣=1的漸近線方程為y=x,不妨設過點F1與雙曲線的一條漸過線平行的直線方程為y=(x﹣c),與y=﹣x聯(lián)立,可得交點M(,﹣),∵點M在以線段F1F1為直徑的圓外,∴|OM|>|OF1|,即有+>c1,∴>3,即b1>3a1,∴c1﹣a1>3a1,即c>1a.則e=>1.∴雙曲線離心率的取值范圍是(1,+∞).故選:A.點睛:解決橢圓和雙曲線的離心率的求值及范圍問題其關鍵就是確立一個關于a,b,c的方程或不等式,再根據(jù)a,b,c的關系消掉b得到a,c的關系式,建立關于a,b,c的方程或不等式,要充分利用橢圓和雙曲線的幾何性質(zhì)、點的坐標的范圍等.10、C【解析】
由題意利用兩個向量的數(shù)量積的定義和公式,求的值.【詳解】解:由題意可得,求得,或,故選:C.【點睛】本題主要考查兩個向量的數(shù)量積的定義和公式,屬于基礎題.11、D【解析】
求出圓心到直線的距離為:,得出,根據(jù)條件得出到直線的距離或時滿足條件,即可得出答案.【詳解】解:由已知可得:圓:的圓心為(0,0),半徑為2,則圓心到直線的距離為:,∴,而,與的面積相等,∴或,即到直線的距離或時滿足條件,根據(jù)點到直線距離可知,①②④滿足條件.故選:D.【點睛】本題考查直線與圓的位置關系的應用,涉及點到直線的距離公式.12、C【解析】
由題意知:,,設,則,在中,列勾股方程可解得,然后由得出答案.【詳解】解:由題意知:,,設,則在中,列勾股方程得:,解得所以從該葭上隨機取一點,則該點取自水下的概率為故選C.【點睛】本題考查了幾何概型中的長度型,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、2【解析】
由這五位同學答對的題數(shù)分別是,得該組數(shù)據(jù)的平均數(shù),則方差.14、1【解析】
根據(jù)程序框圖直接計算得到答案.【詳解】程序在運行過程中各變量的取值如下所示:是否繼續(xù)循環(huán)ix循環(huán)前14第一圈是44+2第二圈是74+2+8第三圈是104+2+8+14退出循環(huán),所以打印紙上打印出的結果應是:1故答案為:1.【點睛】本題考查了程序框圖,意在考查學生的計算能力和理解能力.15、31【解析】
由二項式定理及其展開式得通項公式得:因為的展開式得通項為,則的展開式中的常數(shù)項為:,得解.【詳解】解:,則的展開式中的常數(shù)項為:.故答案為:31.【點睛】本題考查二項式定理及其展開式的通項公式,求某項的導數(shù),考查計算能力.16、①②④【解析】
①∵,∴平面
,得出上任意一點到平面的距離相等,所以判斷命題①;②由已知得出點P在面上的射影在上,根據(jù)線面垂直的判定和性質(zhì)或三垂線定理,可判斷命題②;③當為中點時,以點D為坐標原點,建立空間直角系,如下圖所示,運用二面角的空間向量求解方法可求得二面角的余弦值,可判斷命題③;④過作平面交于點,做點關于面對稱的點,使得點在平面內(nèi),根據(jù)對稱性和兩點之間線段最短,可求得當點在點時,在一條直線上,取得最小值.可判斷命題④.【詳解】①∵,∴平面
,所以上任意一點到平面的距離相等,所以三棱錐的體積不變,所以①正確;
②在直線上運動時,點P在面上的射影在上,所以DP在面上的射影在上,又,所以,所以②正確;③當為中點時,以點D為坐標原點,建立空間直角系,如下圖所示,設正方體的棱長為2.則:,,所以,設面的法向量為,則,即,令,則,設面的法向量為,,即,,由圖示可知,二面角是銳二面角,所以二面角的余弦值為,所以③不正確;④過作平面交于點,做點關于面對稱的點,使得點在平面內(nèi),則,所以,當點在點時,在一條直線上,取得最小值.因為正方體的棱長為2,所以設點的坐標為,,,所以,所以,又所以,所以,,,故④正確.
故答案為:①②④.【點睛】本題考查空間里的線線,線面,面面關系,幾何體的體積,在求解空間里的兩線段的和的最小值,仍可以運用對稱的思想,兩點之間線段最短進行求解,屬于難度題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1).(2).【解析】
(1)由前三年六月份各天的最高氣溫數(shù)據(jù),求出最高氣溫位于區(qū)間[20,25)和最高氣溫低于20的天數(shù),由此能求出六月份這種酸奶一天的需求量不超過300瓶的概率.(2)當溫度大于等于25℃時,需求量為500,求出Y=900元;當溫度在[20,25)℃時,需求量為300,求出Y=300元;當溫度低于20℃時,需求量為200,求出Y=﹣100元,從而當溫度大于等于20時,Y>0,由此能估計估計Y大于零的概率.【詳解】解:(1)由前三年六月份各天的最高氣溫數(shù)據(jù),得到最高氣溫位于區(qū)間[20,25)和最高氣溫低于20的天數(shù)為2+16+36=54,根據(jù)往年銷售經(jīng)驗,每天需求量與當天最高氣溫(單位:℃)有關.如果最高氣溫不低于25,需求量為500瓶,如果最高氣溫位于區(qū)間[20,25),需求量為300瓶,如果最高氣溫低于20,需求量為200瓶,∴六月份這種酸奶一天的需求量不超過300瓶的概率p.(2)當溫度大于等于25℃時,需求量為500,Y=450×2=900元,當溫度在[20,25)℃時,需求量為300,Y=300×2﹣(450﹣300)×2=300元,當溫度低于20℃時,需求量為200,Y=400﹣(450﹣200)×2=﹣100元,當溫度大于等于20時,Y>0,由前三年六月份各天的最高氣溫數(shù)據(jù),得當溫度大于等于20℃的天數(shù)有:90﹣(2+16)=72,∴估計Y大于零的概率P.【點睛】本題考查概率的求法,考查利潤的所有可能取值的求法,考查函數(shù)、古典概型等基礎知識,考查推理論證能力、運算求解能力、空間想象能力,考查數(shù)形結合思想、化歸與轉化思想,是中檔題.18、(1);(2)【解析】
(1)當時,將原不等式化簡后兩邊平方,由此解出不等式的解集.(2)對分成三種情況,利用零點分段法去絕對值,將表示為分段函數(shù)的形式,根據(jù)單調(diào)性求得的取值范圍.【詳解】(1)時,可得,即,化簡得:,所以不等式的解集為.(2)①當時,由函數(shù)單調(diào)性可得,解得;②當時,,所以符合題意;③當時,由函數(shù)單調(diào)性可得,,解得綜上,實數(shù)的取值范圍為【點睛】本小題主要考查含有絕對值不等式的解法,考查不等式恒成立問題的求解,屬于中檔題.19、(1)見解析;(2).【解析】試題分析:(1)連交于可得是中點,再根據(jù)面可得進而根據(jù)中位線定理可得結果;(2)取中點,由(1)知兩兩垂直.以為原點,所在直線分別為軸,軸,軸建立空間直角坐標系,求出面的一個法向量,用表示面的一個法向量,由可得結果.試題解析:(1)證明:連交于,連是矩形,是中點.又面,且是面與面的交線,是的中點.(2)取中點,由(1)知兩兩垂直.以為原點,所在直線分別為軸,軸,軸建立空間直角坐標系(如圖),則各點坐標為.設存在滿足要求,且,則由得:,面的一個法向量為,面的一個法向量為,由,得,解得,故存在,使二面角為直角,此時.20、(1)(2)【解析】
(1)為假,則為真,求導,利用導函數(shù)研究函數(shù)有零點條件得的取值范圍;(2)由為假,為真,知一真一假;分類討論列不等式組可解.【詳解】(1)依題意,為真,則無解,即無解;令,則,故當時,,單調(diào)遞增,當,,單調(diào)遞減,作出函數(shù)圖象如下所示,觀察可知,,即;(2)若為真,則,解得;由為假,為真,知一真一假;若真假,則實數(shù)滿足,則;若假真,則實數(shù)滿足,無解;綜上所述,實數(shù)的取值范圍為.【點睛】本題考查根據(jù)全(特)稱命題的真假求參數(shù)的問題.其思路:與全稱命題或特稱命題真假有關的參數(shù)取值范圍問題的本質(zhì)是恒成立問題或有解問題.解決此類問題時,一般先利用等價轉化思想將條件合理轉化,得到關于參數(shù)的方程或不等
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2026年健身教練綜合(多訓練方案)試題及答案
- 2026年美睫服務教學(美睫服務應用)試題及答案
- 2026年智能分組控制燈項目項目建議書
- 2025年高職(農(nóng)產(chǎn)品流通與管理)農(nóng)產(chǎn)品包裝設計試題及答案
- 2025年大學建筑學(學術研究實務)試題及答案
- 2025年大學新能源科學與工程(風能利用)試題及答案
- 2025年大學一年級(邏輯學)論證分析階段測試題及答案
- 2025年大學戲劇影視表演(影視角色塑造)試題及答案
- 2025年大學分子生物學(分子生物學基礎)試題及答案
- 2025年大學產(chǎn)品設計(交互設計)試題及答案
- 供電一把手講安全課
- 本科實習男護生職業(yè)認同感調(diào)查及影響因素分析
- T-GDWCA 0035-2018 HDMI 連接線標準規(guī)范
- 合肥機床行業(yè)現(xiàn)狀分析
- 面板堆石壩面板滑模結構設計
- 無人機裝調(diào)檢修工培訓計劃及大綱
- 國家開放大學《森林保護》形考任務1-4參考答案
- GB 31604.1-2023食品安全國家標準食品接觸材料及制品遷移試驗通則
- 殯葬服務心得體會 殯儀館工作心得體會
- 電力線路維護檢修規(guī)程
- 春よ、來い(春天來了)高木綾子演奏長笛曲譜鋼琴伴奏
評論
0/150
提交評論