2024屆福建省高三下學(xué)期期末考試(二模)數(shù)學(xué)試題_第1頁(yè)
2024屆福建省高三下學(xué)期期末考試(二模)數(shù)學(xué)試題_第2頁(yè)
2024屆福建省高三下學(xué)期期末考試(二模)數(shù)學(xué)試題_第3頁(yè)
2024屆福建省高三下學(xué)期期末考試(二模)數(shù)學(xué)試題_第4頁(yè)
2024屆福建省高三下學(xué)期期末考試(二模)數(shù)學(xué)試題_第5頁(yè)
已閱讀5頁(yè),還剩14頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2024屆福建省高三下學(xué)期期末考試(二模)數(shù)學(xué)試題注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)填寫(xiě)在答題卡上。2.回答選擇題時(shí),選出每小題答案后,用鉛筆把答題卡上對(duì)應(yīng)題目的答案標(biāo)號(hào)涂黑,如需改動(dòng),用橡皮擦干凈后,再選涂其它答案標(biāo)號(hào)?;卮鸱沁x擇題時(shí),將答案寫(xiě)在答題卡上,寫(xiě)在本試卷上無(wú)效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知函數(shù),,當(dāng)時(shí),不等式恒成立,則實(shí)數(shù)a的取值范圍為()A. B. C. D.2.函數(shù)f(x)=ln(A. B. C. D.3.已知、分別是雙曲線的左、右焦點(diǎn),過(guò)作雙曲線的一條漸近線的垂線,分別交兩條漸近線于點(diǎn)、,過(guò)點(diǎn)作軸的垂線,垂足恰為,則雙曲線的離心率為()A. B. C. D.4.在邊長(zhǎng)為的菱形中,,沿對(duì)角線折成二面角為的四面體(如圖),則此四面體的外接球表面積為()A. B.C. D.5.若復(fù)數(shù)滿足,則()A. B. C.2 D.6.執(zhí)行如圖所示的程序框圖,若輸出的結(jié)果為11,則圖中的判斷條件可以為()A. B. C. D.7.已知復(fù)數(shù)滿足,則的最大值為()A. B. C. D.68.近年來(lái),隨著網(wǎng)絡(luò)的普及和智能手機(jī)的更新?lián)Q代,各種方便的相繼出世,其功能也是五花八門(mén).某大學(xué)為了調(diào)查在校大學(xué)生使用的主要用途,隨機(jī)抽取了名大學(xué)生進(jìn)行調(diào)查,各主要用途與對(duì)應(yīng)人數(shù)的結(jié)果統(tǒng)計(jì)如圖所示,現(xiàn)有如下說(shuō)法:①可以估計(jì)使用主要聽(tīng)音樂(lè)的大學(xué)生人數(shù)多于主要看社區(qū)、新聞、資訊的大學(xué)生人數(shù);②可以估計(jì)不足的大學(xué)生使用主要玩游戲;③可以估計(jì)使用主要找人聊天的大學(xué)生超過(guò)總數(shù)的.其中正確的個(gè)數(shù)為()A. B. C. D.9.我們熟悉的卡通形象“哆啦A夢(mèng)”的長(zhǎng)寬比為.在東方文化中通常稱(chēng)這個(gè)比例為“白銀比例”,該比例在設(shè)計(jì)和建筑領(lǐng)域有著廣泛的應(yīng)用.已知某電波塔自下而上依次建有第一展望臺(tái)和第二展望臺(tái),塔頂?shù)剿椎母叨扰c第二展望臺(tái)到塔底的高度之比,第二展望臺(tái)到塔底的高度與第一展望臺(tái)到塔底的高度之比皆等于“白銀比例”,若兩展望臺(tái)間高度差為100米,則下列選項(xiàng)中與該塔的實(shí)際高度最接近的是()A.400米 B.480米C.520米 D.600米10.已知函數(shù),若,則等于()A.-3 B.-1 C.3 D.011.已知,為兩條不同直線,,,為三個(gè)不同平面,下列命題:①若,,則;②若,,則;③若,,則;④若,,則.其中正確命題序號(hào)為()A.②③ B.②③④ C.①④ D.①②③12.已知函數(shù),,,,則,,的大小關(guān)系為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.設(shè)全集,集合,,則集合______.14.已知是定義在上的偶函數(shù),其導(dǎo)函數(shù)為.若時(shí),,則不等式的解集是___________.15.已知復(fù)數(shù)滿足(為虛數(shù)單位),則復(fù)數(shù)的實(shí)部為_(kāi)___________.16.已知集合,,則________.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)某商場(chǎng)舉行優(yōu)惠促銷(xiāo)活動(dòng),顧客僅可以從以下兩種優(yōu)惠方案中選擇一種.方案一:每滿100元減20元;方案二:滿100元可抽獎(jiǎng)一次.具體規(guī)則是從裝有2個(gè)紅球、2個(gè)白球的箱子隨機(jī)取出3個(gè)球(逐個(gè)有放回地抽?。?,所得結(jié)果和享受的優(yōu)惠如下表:(注:所有小球僅顏色有區(qū)別)紅球個(gè)數(shù)3210實(shí)際付款7折8折9折原價(jià)(1)該商場(chǎng)某顧客購(gòu)物金額超過(guò)100元,若該顧客選擇方案二,求該顧客獲得7折或8折優(yōu)惠的概率;(2)若某顧客購(gòu)物金額為180元,選擇哪種方案更劃算?18.(12分)已知(1)當(dāng)時(shí),判斷函數(shù)的極值點(diǎn)的個(gè)數(shù);(2)記,若存在實(shí)數(shù),使直線與函數(shù)的圖象交于不同的兩點(diǎn),求證:.19.(12分)如圖,在四棱錐中,底面為菱形,底面,.(1)求證:平面;(2)若直線與平面所成的角為,求平面與平面所成銳二面角的余弦值.20.(12分)己知等差數(shù)列的公差,,且,,成等比數(shù)列.(1)求使不等式成立的最大自然數(shù)n;(2)記數(shù)列的前n項(xiàng)和為,求證:.21.(12分)在平面直角坐標(biāo)系xOy中,曲線的參數(shù)方程為(為參數(shù)).以平面直角坐標(biāo)系的原點(diǎn)為極點(diǎn),軸的非負(fù)半軸為極軸建立極坐標(biāo)系,直線的極坐標(biāo)方程為.(1)求曲線的極坐標(biāo)方程;(2)設(shè)和交點(diǎn)的交點(diǎn)為,求的面積.22.(10分)已知是圓:的直徑,動(dòng)圓過(guò),兩點(diǎn),且與直線相切.(1)若直線的方程為,求的方程;(2)在軸上是否存在一個(gè)定點(diǎn),使得以為直徑的圓恰好與軸相切?若存在,求出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】

由變形可得,可知函數(shù)在為增函數(shù),由恒成立,求解參數(shù)即可求得取值范圍.【詳解】,即函數(shù)在時(shí)是單調(diào)增函數(shù).則恒成立..令,則時(shí),單調(diào)遞減,時(shí)單調(diào)遞增.故選:D.【點(diǎn)睛】本題考查構(gòu)造函數(shù),借助單調(diào)性定義判斷新函數(shù)的單調(diào)性問(wèn)題,考查恒成立時(shí)求解參數(shù)問(wèn)題,考查學(xué)生的分析問(wèn)題的能力和計(jì)算求解的能力,難度較難.2、C【解析】因?yàn)閒x=lnx2-4x+4x-23=3、B【解析】

設(shè)點(diǎn)位于第二象限,可求得點(diǎn)的坐標(biāo),再由直線與直線垂直,轉(zhuǎn)化為兩直線斜率之積為可得出的值,進(jìn)而可求得雙曲線的離心率.【詳解】設(shè)點(diǎn)位于第二象限,由于軸,則點(diǎn)的橫坐標(biāo)為,縱坐標(biāo)為,即點(diǎn),由題意可知,直線與直線垂直,,,因此,雙曲線的離心率為.故選:B.【點(diǎn)睛】本題考查雙曲線離心率的計(jì)算,解答的關(guān)鍵就是得出、、的等量關(guān)系,考查計(jì)算能力,屬于中等題.4、A【解析】

畫(huà)圖取的中點(diǎn)M,法一:四邊形的外接圓直徑為OM,即可求半徑從而求外接球表面積;法二:根據(jù),即可求半徑從而求外接球表面積;法三:作出的外接圓直徑,求出和,即可求半徑從而求外接球表面積;【詳解】如圖,取的中點(diǎn)M,和的外接圓半徑為,和的外心,到弦的距離(弦心距)為.法一:四邊形的外接圓直徑,,;法二:,,;法三:作出的外接圓直徑,則,,,,,,,,,.故選:A【點(diǎn)睛】此題考查三棱錐的外接球表面積,關(guān)鍵點(diǎn)是通過(guò)幾何關(guān)系求得球心位置和球半徑,方法較多,屬于較易題目.5、D【解析】

把已知等式變形,利用復(fù)數(shù)代數(shù)形式的乘除運(yùn)算化簡(jiǎn),再由復(fù)數(shù)模的計(jì)算公式計(jì)算.【詳解】解:由題意知,,,∴,故選:D.【點(diǎn)睛】本題考查復(fù)數(shù)代數(shù)形式的乘除運(yùn)算,考查復(fù)數(shù)模的求法.6、B【解析】

根據(jù)程序框圖知當(dāng)時(shí),循環(huán)終止,此時(shí),即可得答案.【詳解】,.運(yùn)行第一次,,不成立,運(yùn)行第二次,,不成立,運(yùn)行第三次,,不成立,運(yùn)行第四次,,不成立,運(yùn)行第五次,,成立,輸出i的值為11,結(jié)束.故選:B.【點(diǎn)睛】本題考查補(bǔ)充程序框圖判斷框的條件,考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想,考查邏輯推理能力和運(yùn)算求解能力,求解時(shí)注意模擬程序一步一步執(zhí)行的求解策略.7、B【解析】

設(shè),,利用復(fù)數(shù)幾何意義計(jì)算.【詳解】設(shè),由已知,,所以點(diǎn)在單位圓上,而,表示點(diǎn)到的距離,故.故選:B.【點(diǎn)睛】本題考查求復(fù)數(shù)模的最大值,其實(shí)本題可以利用不等式來(lái)解決.8、C【解析】

根據(jù)利用主要聽(tīng)音樂(lè)的人數(shù)和使用主要看社區(qū)、新聞、資訊的人數(shù)作大小比較,可判斷①的正誤;計(jì)算使用主要玩游戲的大學(xué)生所占的比例,可判斷②的正誤;計(jì)算使用主要找人聊天的大學(xué)生所占的比例,可判斷③的正誤.綜合得出結(jié)論.【詳解】使用主要聽(tīng)音樂(lè)的人數(shù)為,使用主要看社區(qū)、新聞、資訊的人數(shù)為,所以①正確;使用主要玩游戲的人數(shù)為,而調(diào)查的總?cè)藬?shù)為,,故超過(guò)的大學(xué)生使用主要玩游戲,所以②錯(cuò)誤;使用主要找人聊天的大學(xué)生人數(shù)為,因?yàn)?,所以③正確.故選:C.【點(diǎn)睛】本題考查統(tǒng)計(jì)中相關(guān)命題真假的判斷,計(jì)算出相應(yīng)的頻數(shù)與頻率是關(guān)鍵,考查數(shù)據(jù)處理能力,屬于基礎(chǔ)題.9、B【解析】

根據(jù)題意,畫(huà)出幾何關(guān)系,結(jié)合各線段比例可先求得第一展望臺(tái)和第二展望臺(tái)的距離,進(jìn)而由比例即可求得該塔的實(shí)際高度.【詳解】設(shè)第一展望臺(tái)到塔底的高度為米,塔的實(shí)際高度為米,幾何關(guān)系如下圖所示:由題意可得,解得;且滿足,故解得塔高米,即塔高約為480米.故選:B【點(diǎn)睛】本題考查了對(duì)中國(guó)文化的理解與簡(jiǎn)單應(yīng)用,屬于基礎(chǔ)題.10、D【解析】分析:因?yàn)轭}設(shè)中給出了的值,要求的值,故應(yīng)考慮兩者之間滿足的關(guān)系.詳解:由題設(shè)有,故有,所以,從而,故選D.點(diǎn)睛:本題考查函數(shù)的表示方法,解題時(shí)注意根據(jù)問(wèn)題的條件和求解的結(jié)論之間的關(guān)系去尋找函數(shù)的解析式要滿足的關(guān)系.11、C【解析】

根據(jù)直線與平面,平面與平面的位置關(guān)系進(jìn)行判斷即可.【詳解】根據(jù)面面平行的性質(zhì)以及判定定理可得,若,,則,故①正確;若,,平面可能相交,故②錯(cuò)誤;若,,則可能平行,故③錯(cuò)誤;由線面垂直的性質(zhì)可得,④正確;故選:C【點(diǎn)睛】本題主要考查了判斷直線與平面,平面與平面的位置關(guān)系,屬于中檔題.12、B【解析】

可判斷函數(shù)在上單調(diào)遞增,且,所以.【詳解】在上單調(diào)遞增,且,所以.故選:B【點(diǎn)睛】本題主要考查了函數(shù)單調(diào)性的判定,指數(shù)函數(shù)與對(duì)數(shù)函數(shù)的性質(zhì),利用單調(diào)性比大小等知識(shí),考查了學(xué)生的運(yùn)算求解能力.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

分別解得集合A與集合B的補(bǔ)集,再由集合交集的運(yùn)算法則計(jì)算求得答案.【詳解】由題可知,集合A中集合B的補(bǔ)集,則故答案為:【點(diǎn)睛】本題考查集合的交集與補(bǔ)集運(yùn)算,屬于基礎(chǔ)題.14、【解析】

構(gòu)造,先利用定義判斷的奇偶性,再利用導(dǎo)數(shù)判斷其單調(diào)性,轉(zhuǎn)化為,結(jié)合奇偶性,單調(diào)性求解不等式即可.【詳解】令,則是上的偶函數(shù),,則在上遞減,于是在上遞增.由得,即,于是,則,解得.故答案為:【點(diǎn)睛】本題考查了利用函數(shù)的奇偶性、單調(diào)性解不等式,考查了學(xué)生綜合分析,轉(zhuǎn)化劃歸,數(shù)學(xué)運(yùn)算的能力,屬于較難題.15、【解析】

利用復(fù)數(shù)的概念與復(fù)數(shù)的除法運(yùn)算計(jì)算即可得到答案.【詳解】,所以復(fù)數(shù)的實(shí)部為2.故答案為:2【點(diǎn)睛】本題考查復(fù)數(shù)的除法運(yùn)算,考查學(xué)生的基本計(jì)算能力,是一道基礎(chǔ)題.16、【解析】

利用交集定義直接求解.【詳解】解:集合奇數(shù),偶數(shù),.故答案為:.【點(diǎn)睛】本題考查交集的求法,考查交集定義等基礎(chǔ)知識(shí),考查運(yùn)算求解能力,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)(2)選擇方案二更為劃算【解析】

(1)計(jì)算顧客獲得7折優(yōu)惠的概率,獲得8折優(yōu)惠的概率,相加得到答案.(2)選擇方案二,記付款金額為元,則可取的值為126,144,162,180.,計(jì)算概率得到數(shù)學(xué)期望,比較大小得到答案.【詳解】(1)該顧客獲得7折優(yōu)惠的概率,該顧客獲得8折優(yōu)惠的概率,故該顧客獲得7折或8折優(yōu)惠的概率.(2)若選擇方案一,則付款金額為.若選擇方案二,記付款金額為元,則可取的值為126,144,162,180.,,則.因?yàn)?,所以選擇方案二更為劃算.【點(diǎn)睛】本題考查了概率的計(jì)算,數(shù)學(xué)期望,意在考查學(xué)生的計(jì)算能力和應(yīng)用能力.18、(1)沒(méi)有極值點(diǎn);(2)證明見(jiàn)解析【解析】

(1)求導(dǎo)可得,再求導(dǎo)可得,則在遞增,則,從而在遞增,即可判斷;(2)轉(zhuǎn)化問(wèn)題為存在且,使,可得,由(1)可知,即,則,整理可得,則,設(shè),則可整理為,設(shè),利用導(dǎo)函數(shù)可得,即可求證.【詳解】(1)當(dāng)時(shí),,,所以在遞增,所以,所以在遞增,所以函數(shù)沒(méi)有極值點(diǎn).(2)由題,,若存在實(shí)數(shù),使直線與函數(shù)的圖象交于不同的兩點(diǎn),即存在且,使.由可得,,由(1)可知,可得.,所以,即,下面證明,只需證明:,令,則證,即.設(shè),那么,所以,所以,即【點(diǎn)睛】本題考查利用導(dǎo)函數(shù)求函數(shù)的極值點(diǎn),考查利用導(dǎo)函數(shù)解決雙變量問(wèn)題,考查運(yùn)算能力與推理論證能力.19、(1)證明見(jiàn)解析(2)【解析】

(1)由底面為菱形,得,再由底面,可得,結(jié)合線面垂直的判定可得平面;(2)以點(diǎn)為坐標(biāo)原點(diǎn),以所在直線及過(guò)點(diǎn)且垂直于平面的直線分別為軸建立空間直角坐標(biāo)系,分別求出平面與平面的一個(gè)法向量,由兩法向量所成角的余弦值可得平面與平面所成銳二面角的余弦值.【詳解】(1)證明:底面為菱形,,底面,平面,又,平面,平面;(2)解:,,為等邊三角形,.底面,是直線與平面所成的角為,在中,由,解得.如圖,以點(diǎn)為坐標(biāo)原點(diǎn),以所在直線及過(guò)點(diǎn)且垂直于平面的直線分別為軸建立空間直角坐標(biāo)系.則,,,,.,,,.設(shè)平面與平面的一個(gè)法向量分別為,.由,取,得;由,取,得..平面與平面所成銳二面角的余弦值為.【點(diǎn)睛】本題考查直線與平面垂直的判定,考查空間想象能力與思維能力,訓(xùn)練了利用空間向量求解空間角,屬于中檔題.20、(1);(2)證明見(jiàn)解析【解析】

(1)根據(jù),,成等比數(shù)列,有,結(jié)合公差,,求得通項(xiàng),再解不等式.(2)根據(jù)(1),用裂項(xiàng)相消法求和,然后研究其單調(diào)性即可.【詳解】(1)由題意,可知,即,∴.又,,∴,∴.∴,∴,故滿足題意的最大自然數(shù)為.(2),∴...從而當(dāng)時(shí),單調(diào)遞增,且,當(dāng)時(shí),單調(diào)遞增,且,所以,由,知不等式成立.【點(diǎn)睛】本題主要考查等差數(shù)列的基本運(yùn)算和裂項(xiàng)相消法求和,還考查了運(yùn)算求解的能力,屬于中檔題.21、(1);(2)【解析】

(1)先將曲線的參數(shù)方程化為普通方程,再將普通方程化為極坐標(biāo)方程即可.(2)將和的極坐標(biāo)方程聯(lián)立,求得兩個(gè)曲線交點(diǎn)的極坐標(biāo),即可由極坐標(biāo)的含義求得的面積.【詳解】(1)曲線的參數(shù)方程為(α為參數(shù)),消去參數(shù)的的直角坐標(biāo)方程為.所以的極坐標(biāo)方程為(2)解方程組,得到.所以,則或().當(dāng)()時(shí),,當(dāng)()時(shí),.所以和的交點(diǎn)極坐標(biāo)為:,.所以.故的面積為.【點(diǎn)睛】本題考查了參數(shù)方程與普通方程的轉(zhuǎn)化,直角坐標(biāo)方程與極坐標(biāo)的轉(zhuǎn)化,利用極坐標(biāo)求三角形面積,屬于中檔題.22、(1)或.(2

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論