2024-2025學年青海省海北市高三下學期期末調(diào)研考試數(shù)學試題含解析_第1頁
2024-2025學年青海省海北市高三下學期期末調(diào)研考試數(shù)學試題含解析_第2頁
2024-2025學年青海省海北市高三下學期期末調(diào)研考試數(shù)學試題含解析_第3頁
2024-2025學年青海省海北市高三下學期期末調(diào)研考試數(shù)學試題含解析_第4頁
2024-2025學年青海省海北市高三下學期期末調(diào)研考試數(shù)學試題含解析_第5頁
已閱讀5頁,還剩14頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2024-2025學年青海省海北市高三下學期期末調(diào)研考試數(shù)學試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.某幾何體的三視圖如圖所示,則該幾何體的體積是()A. B. C. D.2.已知等差數(shù)列{an},則“a2>a1”是“數(shù)列{an}為單調(diào)遞增數(shù)列”的()A.充分而不必要條件B.必要而不充分條件C.充分必要條件D.既不充分也不必要條件3.已知雙曲線的左、右頂點分別為,點是雙曲線上與不重合的動點,若,則雙曲線的離心率為()A. B. C.4 D.24.已知是虛數(shù)單位,若,,則實數(shù)()A.或 B.-1或1 C.1 D.5.已知集合,定義集合,則等于()A. B.C. D.6.的展開式中的系數(shù)是()A.160 B.240 C.280 D.3207.若復數(shù)滿足(是虛數(shù)單位),則的虛部為()A. B. C. D.8.公元前世紀,古希臘哲學家芝諾發(fā)表了著名的阿基里斯悖論:他提出讓烏龜在跑步英雄阿基里斯前面米處開始與阿基里斯賽跑,并且假定阿基里斯的速度是烏龜?shù)谋?當比賽開始后,若阿基里斯跑了米,此時烏龜便領(lǐng)先他米,當阿基里斯跑完下一個米時,烏龜先他米,當阿基里斯跑完下-個米時,烏龜先他米....所以,阿基里斯永遠追不上烏龜.按照這樣的規(guī)律,若阿基里斯和烏龜?shù)木嚯x恰好為米時,烏龜爬行的總距離為()A.米 B.米C.米 D.米9.雙曲線的左右焦點為,一條漸近線方程為,過點且與垂直的直線分別交雙曲線的左支及右支于,滿足,則該雙曲線的離心率為()A. B.3 C. D.210.已知雙曲線的兩條漸近線與拋物線的準線分別交于點、,O為坐標原點.若雙曲線的離心率為2,三角形AOB的面積為,則p=().A.1 B. C.2 D.311.已知集合A={x|x<1},B={x|},則A. B.C. D.12.已知函數(shù),將的圖象上的所有點的橫坐標縮短到原來的,縱坐標保持不變;再把所得圖象向上平移個單位長度,得到函數(shù)的圖象,若,則的值可能為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.的展開式中,的系數(shù)為____________.14.設(shè)為等比數(shù)列的前項和,若,且,,成等差數(shù)列,則.15.在直角三角形中,為直角,,點在線段上,且,若,則的正切值為_____.16.已知平行于軸的直線與雙曲線:的兩條漸近線分別交于,兩點,為坐標原點,若為等邊三角形,則雙曲線的離心率為______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù)(1)已知直線:,:.若直線與關(guān)于對稱,又函數(shù)在處的切線與垂直,求實數(shù)的值;(2)若函數(shù),則當,時,求證:①;②.18.(12分)已知函數(shù).(1)若函數(shù)不存在單調(diào)遞減區(qū)間,求實數(shù)的取值范圍;(2)若函數(shù)的兩個極值點為,,求的最小值.19.(12分)如圖,底面是等腰梯形,,點為的中點,以為邊作正方形,且平面平面.(1)證明:平面平面.(2)求二面角的正弦值.20.(12分)已知函數(shù)(),是的導數(shù).(1)當時,令,為的導數(shù).證明:在區(qū)間存在唯一的極小值點;(2)已知函數(shù)在上單調(diào)遞減,求的取值范圍.21.(12分)設(shè)函數(shù).(1)若函數(shù)在是單調(diào)遞減的函數(shù),求實數(shù)的取值范圍;(2)若,證明:.22.(10分)已知函數(shù).(1)時,求不等式解集;(2)若的解集包含于,求a的取值范圍.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.A【解析】

觀察可知,這個幾何體由兩部分構(gòu)成,:一個半圓柱體,底面圓的半徑為1,高為2;一個半球體,半徑為1,按公式計算可得體積?!驹斀狻吭O(shè)半圓柱體體積為,半球體體積為,由題得幾何體體積為,故選A。本題通過三視圖考察空間識圖的能力,屬于基礎(chǔ)題。2.C【解析】試題分析:根據(jù)充分條件和必要條件的定義進行判斷即可.解:在等差數(shù)列{an}中,若a2>a1,則d>0,即數(shù)列{an}為單調(diào)遞增數(shù)列,若數(shù)列{an}為單調(diào)遞增數(shù)列,則a2>a1,成立,即“a2>a1”是“數(shù)列{an}為單調(diào)遞增數(shù)列”充分必要條件,故選C.考點:必要條件、充分條件與充要條件的判斷.3.D【解析】

設(shè),,,根據(jù)可得①,再根據(jù)又②,由①②可得,化簡可得,即可求出離心率.【詳解】解:設(shè),,,∵,∴,即,①又,②,由①②可得,∵,∴,∴,∴,即,故選:D.本題考查雙曲線的方程和性質(zhì),考查了斜率的計算,離心率的求法,屬于基礎(chǔ)題和易錯題.4.B【解析】

由題意得,,然后求解即可【詳解】∵,∴.又∵,∴,∴.本題考查復數(shù)的運算,屬于基礎(chǔ)題5.C【解析】

根據(jù)定義,求出,即可求出結(jié)論.【詳解】因為集合,所以,則,所以.故選:C.本題考查集合的新定義運算,理解新定義是解題的關(guān)鍵,屬于基礎(chǔ)題.6.C【解析】

首先把看作為一個整體,進而利用二項展開式求得的系數(shù),再求的展開式中的系數(shù),二者相乘即可求解.【詳解】由二項展開式的通項公式可得的第項為,令,則,又的第為,令,則,所以的系數(shù)是.故選:C本題考查二項展開式指定項的系數(shù),掌握二項展開式的通項是解題的關(guān)鍵,屬于基礎(chǔ)題.7.A【解析】

由得,然后分子分母同時乘以分母的共軛復數(shù)可得復數(shù),從而可得的虛部.【詳解】因為,所以,所以復數(shù)的虛部為.故選A.本題考查了復數(shù)的除法運算和復數(shù)的概念,屬于基礎(chǔ)題.復數(shù)除法運算的方法是分子分母同時乘以分母的共軛復數(shù),轉(zhuǎn)化為乘法運算.8.D【解析】

根據(jù)題意,是一個等比數(shù)列模型,設(shè),由,解得,再求和.【詳解】根據(jù)題意,這是一個等比數(shù)列模型,設(shè),所以,解得,所以.故選:D本題主要考查等比數(shù)列的實際應用,還考查了建模解模的能力,屬于中檔題.9.A【解析】

設(shè),直線的方程為,聯(lián)立方程得到,,根據(jù)向量關(guān)系化簡到,得到離心率.【詳解】設(shè),直線的方程為.聯(lián)立整理得,則.因為,所以為線段的中點,所以,,整理得,故該雙曲線的離心率.故選:.本題考查了雙曲線的離心率,意在考查學生的計算能力和轉(zhuǎn)化能力.10.C【解析】試題分析:拋物線的準線為,雙曲線的離心率為2,則,,漸近線方程為,求出交點,,,則;選C考點:1.雙曲線的漸近線和離心率;2.拋物線的準線方程;11.A【解析】∵集合∴∵集合∴,故選A12.C【解析】

利用二倍角公式與輔助角公式將函數(shù)的解析式化簡,然后利用圖象變換規(guī)律得出函數(shù)的解析式為,可得函數(shù)的值域為,結(jié)合條件,可得出、均為函數(shù)的最大值,于是得出為函數(shù)最小正周期的整數(shù)倍,由此可得出正確選項.【詳解】函數(shù),將函數(shù)的圖象上的所有點的橫坐標縮短到原來的倍,得的圖象;再把所得圖象向上平移個單位,得函數(shù)的圖象,易知函數(shù)的值域為.若,則且,均為函數(shù)的最大值,由,解得;其中、是三角函數(shù)最高點的橫坐標,的值為函數(shù)的最小正周期的整數(shù)倍,且.故選C.本題考查三角函數(shù)圖象變換,同時也考查了正弦型函數(shù)與周期相關(guān)的問題,解題的關(guān)鍵在于確定、均為函數(shù)的最大值,考查分析問題和解決問題的能力,屬于中等題.二、填空題:本題共4小題,每小題5分,共20分。13.16【解析】

要得到的系數(shù),只要求出二項式中的系數(shù)減去的系數(shù)的2倍即可【詳解】的系數(shù)為.故答案為:16此題考查二項式的系數(shù),屬于基礎(chǔ)題.14..【解析】試題分析:∵,,成等差數(shù)列,∴,又∵等比數(shù)列,∴.考點:等差數(shù)列與等比數(shù)列的性質(zhì).【名師點睛】本題主要考查等差與等比數(shù)列的性質(zhì),屬于容易題,在解題過程中,需要建立關(guān)于等比數(shù)列基本量的方程即可求解,考查學生等價轉(zhuǎn)化的思想與方程思想.15.3【解析】

在直角三角形中設(shè),,,利用兩角差的正切公式求解.【詳解】設(shè),,則,故.故答案為:3此題考查在直角三角形中求角的正切值,關(guān)鍵在于合理構(gòu)造角的和差關(guān)系,其本質(zhì)是利用兩角差的正切公式求解.16.2【解析】

根據(jù)為等邊三角形建立的關(guān)系式,從而可求離心率.【詳解】據(jù)題設(shè)分析知,,所以,得,所以雙曲線的離心率.本題主要考查雙曲線的離心率的求解,根據(jù)條件建立之間的關(guān)系式是求解的關(guān)鍵,側(cè)重考查數(shù)學運算的核心素養(yǎng).三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1)(2)①證明見解析②證明見解析【解析】

(1)首先根據(jù)直線關(guān)于直線對稱的直線的求法,求得的方程及其斜率.根據(jù)函數(shù)在處的切線與垂直列方程,解方程求得的值.(2)①構(gòu)造函數(shù),利用的導函數(shù)證得當時,,由此證得.②由①知成立,整理得成立.利用構(gòu)造函數(shù)法證得,由此得到,即,化簡后得到.【詳解】(1)由解得必過與的交點.在上取點,易得點關(guān)于對稱的點為,即為直線,所以的方程為,即,其斜率為.又因為,所以,,由題意,解得.(2)因為,所以.①令,則,則,且,,時,,單調(diào)遞減;時,,單調(diào)遞增.因為,所以,因為,所以存在,使時,,單調(diào)遞增;時,,單調(diào)遞減;時,,單調(diào)遞增.又,所以時,,即,所以,即成立.②由①知成立,即有成立.令,即.所以時,,單調(diào)遞增;時,,單調(diào)遞減,所以,即,因為,所以,所以時,,即時,.本小題考查函數(shù)圖象的對稱性,利用導數(shù)求切線的斜率,利用導數(shù)證明不等式等基礎(chǔ)知識;考查學生分析問題,解決問題的能力,推理與運算求解能力,轉(zhuǎn)化與化歸思想,數(shù)形結(jié)合思想和應用意識.18.(1)(2)【解析】分析:(1)先求導,再令在上恒成立,得到上恒成立,利用基本不等式得到m的取值范圍.(2)先由得到,再求得,再構(gòu)造函數(shù)再利用導數(shù)求其最小值.詳解:(1)由函數(shù)有意義,則由且不存在單調(diào)遞減區(qū)間,則在上恒成立,上恒成立(2)由知,令,即由有兩個極值點故為方程的兩根,,,則由由,則上單調(diào)遞減,即由知綜上所述,的最小值為.點睛:(1)本題主要考查利用導數(shù)求函數(shù)的單調(diào)區(qū)間和極值,考查利用導數(shù)求函數(shù)的最值,意在考查學生對這些知識的掌握水平和分析推理能力.(2)本題的難點有兩個,其一是求出,其二是構(gòu)造函數(shù)再利用導數(shù)求其最小值.19.(1)見解析;(2)【解析】

(1)先證明四邊形是菱形,進而可知,然后可得到平面,即可證明平面平面;(2)記AC,BE的交點為O,再取FG的中點P.以O(shè)為坐標原點,以射線OB,OC,OP分別為x軸、y軸、z軸的正半軸建立如圖所示的空間直角坐標系,分別求出平面ABF和DBF的法向量,然后由,可求出二面角的余弦值,進而可求出二面角的正弦值.【詳解】(1)證明:因為點為的中點,,所以,因為,所以,所以四邊形是平行四邊形,因為,所以平行四邊形是菱形,所以,因為平面平面,且平面平面,所以平面.因為平面,所以平面平面.(2)記AC,BE的交點為O,再取FG的中點P.由題意可知AC,BE,OP兩兩垂直,故以O(shè)為坐標原點,以射線OB,OC,OP分別為x軸、y軸、z軸的正半軸建立如圖所示的空間直角坐標系.因為底面ABCD是等腰梯形,,所以四邊形ABCE是菱形,且,所以,則,設(shè)平面ABF的法向量為,則,不妨取,則,設(shè)平面DBF的法向量為,則,不妨取,則,故.記二面角的大小為,故.本題考查了面面垂直的證明,考查了二面角的求法,利用空間向量求平面的法向量是解決空間角問題的常見方法,屬于中檔題.20.(1)見解析;(2)【解析】

(1)設(shè),,注意到在上單增,再利用零點存在性定理即可解決;(2)函數(shù)在上單調(diào)遞減,則在恒成立,即在上恒成立,構(gòu)造函數(shù),求導討論的最值即可.【詳解】(1)由已知,,所以,設(shè),,當時,單調(diào)遞增,而,,且在上圖象連續(xù)不斷.所以在上有唯一零點,當時,;當時,;∴在單調(diào)遞減,在單調(diào)遞增,故在區(qū)間上存在唯一的極小值點,即在區(qū)間上存在唯一的極小值點;(2)設(shè),,,∴在單調(diào)遞增,,即,從而,因為函數(shù)在上單調(diào)遞減,∴在上恒成立,令,∵,∴,在上單調(diào)遞減,,當時,,則在上單調(diào)遞減,,符合題意.當時,在上單調(diào)遞減,所以一定存在,當時,,在上單調(diào)遞增,與題意不符,舍去.綜上,的取值范圍是本題考查利用導數(shù)研究函數(shù)的極值點、不等式恒成立問題,在處理恒成立問題時,通常是構(gòu)造函數(shù),轉(zhuǎn)化成函數(shù)的最值來處理,本題是一道較難的題.21.(1)(2)證明見解析【解析】

(1)求出導函數(shù),由在上恒成立,采用分離參數(shù)法求解;(2)觀察函數(shù),不等式湊配后知,利用時可證結(jié)論.【詳解】(1)因為在上單調(diào)遞減,所以,即在上恒成立因為在上是單調(diào)遞減的,所以,所以(2)因為,所以由(1)知,當時,在上單調(diào)遞減所以即所以.本題考查用導數(shù)研究函數(shù)的單調(diào)性,考查用導數(shù)證明不

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論