版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
PAGE
PAGE
6
StochasticandDeterministicTrendModels
Inthissection,weconsidermodelsofnonstationarytimeseries,i.e.,series{yt}whosefirstandsecondmoments(meansandcovariances)arefunctionsoftime.Theseincludeallserieswithatrend.Trends,whichcanbeeitherdeterministic(likeatimetrend)orstochastic,willobviouslyproducenonstationarities.Classicalestimationmethods,however,arevalidforstationaryseries.Therefore,trendsmustberemovedfromnonstationaryseries(thusmakingthemstationary)beforeapplyingthemethodsofBoxandJenkins.Removal,however,dependsonidentifyingthetypeoftrendfirst.Generally,stationarityisachievedthroughdifferencingtheseries{D.yt}–differencestationary–orthroughremovalofadeterministictrendbyfirstestimatingthattrendinaseparateregression–trendstationarity.Wewilllookatbothmethods.First,however,let’sconsiderwhatnonstationaritymeans.
RandomWalk
SomeStatacodewasprovidedinthenotesondifferenceequationsandtheirsolutionsthatsimulatedrandomwalks.Youshouldrunthatprogramseveraltimestogetafeelforwhatarandomwalklookslike.Basically,arandomwalkisatimeserieswhosechangeisrandom.Specifically,thechangeiswhitenoise,viz.,
yt=yt-1+tinlevelsor
yt=twheret~N(0,1).
Solvingtheequationinlevelsbackwards(therearetperiods)
yt=y0+iwherethesummationisfromi=1,…,tforstartingvaluey0.
Whatarethestatisticalpropertiesofarandomwalk?Theunconditionalmeanistheexpectedvalue:
Eyt=y0+E(i)=y0.Theunconditionalvarianceis
E(i2)=t2whichisafunctionoftime.Let’snowconstructthe“forecastfunction”forarandomwalk.
Etyt+1=Et[yt+t+1]=ytThisistheconditionalmean.Noticealsothatthes-periodaheadforecastisthesame:
Etyt+s=Et[yt+s-1+t+s]=yt.(Substitutesuccessivelyforyt+s-1).Basically,theconditionalforecast(conditionaloninformationattimet)isthelastrealization.Thisshouldmakesensehoweverbecausechangesinyarewhitenoise.
Howaboutthevarianceofyt+s?(Thisisthesameasthevarianceforyt-s).Weknow
Var(yt)=Var(t+t-1+…+1)=t2.Similarly,
Var(yt-s)=Var(t-s+t-s-1+…+1)=(t-s)2.Alsoafunctionoftime.Ingeneral,wecanconcludethenthatthestandarddeviation(usedtoconstructconfidenceintervalsforforecasts)is2t.
Covariances?Theunconditionalmeanisy0.Thus,
E[(yt-y0)(yt-s-y0)]=(t-s)andsincey0isaconstant,
E[(t+t-1+…+1)(t-s+t-s-1+…+1)]=(t-s)2.
Thecorrelationcoefficientisthisnumberdividedbytheproductofthestandarddeviations:
s=(t-s)2/(t2(t-s)2)?=[(t-s)/t]?.Alsoafunctionoftime.Forlarget,onecaneasilyobservethepatternovers.Thepointhereisthatcorrelationsdonotgotozeroastheywouldinastationaryseries.Thereasonisthattheimpactofashockonfuturevaluesofyispermanent.Youcanreadilyseethatbylookingatthedifferencesolution,ytisreallyjusttheaccumulatedsumofpastshocks.Thus,ihaspermanenteffectsandiconstituteapermanentrandomchangeintheconditionalmean.
Thusythasastochastictrend.
RandomWalkplusDrift
yt=yt-1+a0+twherea0istheconstant“drift”.Solvingthedifferenceequation–
yt=y0+a0t+iwhere,again,thesummationisovert.Thetermsa0t+iarebothnonstationary.Now,wehaveadeterministicplusastochastictrend.Bytheway,
yt-yt-1=yt=a0+tisstationary.
TheunconditionalexpectationisEt(yt+s)=y0+a0(t+s).Theforecastfunction(whichisconditionalonpastyt)is:
Andthishasexpectedvalueequaltoyt+a0s.Youshouldconvinceyourselfthatthisisindeedtrue.
RandomWalkplusNoise
yt=t+t t~N(0,2)andE(tt-s)=0.
t=t-1+t.
Soytisarandomwalkt-1+tplusnoiset.Thisisaseriesthathasastochastictrendplusanoisecomponent.Therandomwalkcomponentisafirstorderdifferenceequationthatcanbesolvedas:
t=0+iwhere,again,thesummationisovert.Therefore:
yt=0+i+t.
Now,att0,solvey0=0+0implyingthat0=y0-0.Substituting,
yt=(y0-0)+i+t.
Theunconditionalmeanis
E(yt)=E(yt+s)=y0-0whichisconstant.Shocks,however,haveapermanenteffect.Noticethatnoiseistransitory,i.e.,ithasatemporaryeffectonytbutnotonyt+s.Furthermore,Var(yt+s)=t2+2which,naturally,includesthenoisecomponent.
Thenoisecomponentwillreducethecorrelationcoefficientbetweenytandyt-srelativetotherandomwalkimplyingthatthecorrelogramwillhavesomewhatfasterdecay(dependingonthenoise).
Howabouttheforecastfunction?
Thishasexpectedvalue(conditionalmean)yt-t.Noticethetransitorynatureofthenoise.Moreover,differencingyields
yt=yt-1+t+t-t-1.(thislookslikeanARMA(1,1)doesn’tit?)
NoiseandDrift
Wecancombinenoiseanddrifteasilyenough.
t=t-1+a0+t.
t=0+a0t+iwhere,again,thesummationisovert.Therefore:
yt=0+a0t+{i+t}.
Deterministictrend Stochastictrend
Bothtrendsarepermanent.TheStochastictrendincludesatransitorynoisecomponentaswell.
Imposingtheinitialconditiony0=0+0again,
yt=(y0-0)+a0t+i+t.Summationovert.
yt+s=(yt-t)+a0s+i+t.Summationovers.
LocalLinearTrendModel
Finally,weconsiderageneralformforwhichalloftheabovearespecialcases.
yt=t+t
t=t-1+at+t randomwalkplusdrift(thetrend)
at=at-1+t randomwalk
If{at}=0,thenwehavetherandomwalkplusnoise.Witht=0foralltime,thenit’sjustarandomwalk.If,ontheotherhand,Var()=0,thenitmustbethattheatareequalforalltime.Thus,ifatisnonzero,thetrendisarandomwalkplusdriftandytisanoisyrandomwalkplusdrift.
Wecansolvethesedifferenceequationstogettheparticularsolution:
at=a0+i.
t=t-1+a0+i+t
=0+i+t(a0+1)+(t-1)2+(t-2)3+…+1.Sincey0=0+0,then
yt=y0+(t-0)+i+t(a0+1)+(t-1)2+(t-2)3+…+1
irregular stochas tic notentirelydeterministic
term trend
Youcanupdatethistosolvefortheforecastfunction:
Etyt+s=(yt-t)+s(a0+1+2+…+t).
Thefirsttermistransitoryandthesecondtermisthetrend.
Removingthetrend
Theforegoingwasmeanttoillustratesomeofthepropertiesofnonstationaryseries.Inordertoestimatethese,wemustmakethemstationaryandthatisachievedbyremovingthetrend.Todothiscorrectly,wemustfirstknowwhetherthetrendisdeterministic(trendstationaryafterthetrendisremoved)orstochastic(differencestationaryafterthetrendisremoved).Thatisn’teasy.NelsonandPlosserwroteaninterestingseminalpaperin1992onthistopicandarguedthatmostmacroeconomicseriesaredifferencestationary(meaningtheyhavestochastictrendsandremovalusingtheestimatedtimetrendwouldhaveresultedinseriousandspuriousspecification).
So,whatdowemeanbytrendstationarity.Ifaserieshasadeterministictimetrend,thenwesimplyregressytonaninterceptandatimetrend(t=1,…,T)andsavetheresiduals.Theresidualsarethedetrendedseries.But,iftheseriesythasastochasticinsteadofdeterministictrendthenwedon’tnecessarilygetastationaryseries.Considertherandomwalkagain.Theresidualsfromthistimetrendregressionassumethatytgrowsataconstantrate.Itdoesnot.Rather,itgrowsatastochasticrate.Thus,theincorrectlydetrendedseriesmaydisplayspuriousbehavior,i.e.,itmaystillbenonstationary.Canyouprovideasimulatedexampleofthis?
Ifthetrendisstochastic,thendifferencing
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2026年一級律師考試案例分析題庫與標準答案詳解
- 2026年汽車維修技師高級技能考核試題
- 2026年電子商務(wù)營銷師認證考試題目及答案
- 2026年高校教授應(yīng)聘面試與評判規(guī)則參考
- 2026年數(shù)學思維訓練初階試題
- 2026年電子商務(wù)行業(yè)運營崗位的營銷策略筆試題目
- 2026年語言邏輯與表達能力提升練習題
- 2026年金融從業(yè)資格考試題庫投資分析與策略
- 2026年醫(yī)療設(shè)備管理員綜合知識測試模擬題
- 2026年醫(yī)療設(shè)備原理與使用技巧測試題
- 對賬單模板完整版本
- 介紹壁球班課件
- 工業(yè)互聯(lián)網(wǎng)安全技術(shù)(微課版)課件全套 項目1-7 工業(yè)互聯(lián)網(wǎng)及安全認識-工業(yè)互聯(lián)網(wǎng)安全新技術(shù)認識
- 甲狀腺乳腺外科診療規(guī)范
- 退換貨方案及措施
- 麻醉科常用耗材分類與管理要點
- 材料力學性能檢驗工安全教育培訓手冊
- 小說影視化改編的深度解析
- JJF 2214-2025 機動車檢測用氣象單元校準規(guī)范
- 嚴格招標需求管理制度
- 外科洗手操作標準與流程
評論
0/150
提交評論