版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2021-2022高考數(shù)學(xué)模擬試卷注意事項(xiàng)1.考生要認(rèn)真填寫(xiě)考場(chǎng)號(hào)和座位序號(hào)。2.試題所有答案必須填涂或書(shū)寫(xiě)在答題卡上,在試卷上作答無(wú)效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知集合A={﹣2,﹣1,0,1,2},B={x|x2﹣4x﹣5<0},則A∩B=()A.{﹣2,﹣1,0} B.{﹣1,0,1,2} C.{﹣1,0,1} D.{0,1,2}2.將函數(shù)的圖像向左平移個(gè)單位長(zhǎng)度后,得到的圖像關(guān)于坐標(biāo)原點(diǎn)對(duì)稱(chēng),則的最小值為()A. B. C. D.3.函數(shù)的部分圖像大致為()A. B.C. D.4.已知復(fù)數(shù)滿(mǎn)足,且,則()A.3 B. C. D.5.已知,則下列說(shuō)法中正確的是()A.是假命題 B.是真命題C.是真命題 D.是假命題6.設(shè)為坐標(biāo)原點(diǎn),是以為焦點(diǎn)的拋物線上任意一點(diǎn),是線段上的點(diǎn),且,則直線的斜率的最大值為()A.1 B. C. D.7.如圖,在矩形中的曲線分別是,的一部分,,,在矩形內(nèi)隨機(jī)取一點(diǎn),若此點(diǎn)取自陰影部分的概率為,取自非陰影部分的概率為,則()A. B. C. D.大小關(guān)系不能確定8.函數(shù)在的圖象大致為()A. B.C. D.9.某工廠一年中各月份的收入、支出情況的統(tǒng)計(jì)如圖所示,下列說(shuō)法中錯(cuò)誤的是().A.收入最高值與收入最低值的比是B.結(jié)余最高的月份是月份C.與月份的收入的變化率與至月份的收入的變化率相同D.前個(gè)月的平均收入為萬(wàn)元10.設(shè)f(x)是定義在R上的偶函數(shù),且在(0,+∞)單調(diào)遞減,則()A. B.C. D.11.已知是雙曲線的左右焦點(diǎn),過(guò)的直線與雙曲線的兩支分別交于兩點(diǎn)(A在右支,B在左支)若為等邊三角形,則雙曲線的離心率為()A. B. C. D.12.點(diǎn)在所在的平面內(nèi),,,,,且,則()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知數(shù)列的各項(xiàng)均為正數(shù),記為的前n項(xiàng)和,若,,則________.14.能說(shuō)明“若對(duì)于任意的都成立,則在上是減函數(shù)”為假命題的一個(gè)函數(shù)是________.15.隨著國(guó)力的發(fā)展,人們的生活水平越來(lái)越好,我國(guó)的人均身高較新中國(guó)成立初期有大幅提高.為了掌握學(xué)生的體質(zhì)與健康現(xiàn)狀,合理制定學(xué)校體育衛(wèi)生工作發(fā)展規(guī)劃,某市進(jìn)行了一次全市高中男生身高統(tǒng)計(jì)調(diào)查,數(shù)據(jù)顯示全市30000名高中男生的身高(單位:)服從正態(tài)分布,且,那么該市身高高于的高中男生人數(shù)大約為_(kāi)_________.16.已知F為雙曲線的右焦點(diǎn),過(guò)F作C的漸近線的垂線FD,D為垂足,且(O為坐標(biāo)原點(diǎn)),則C的離心率為_(kāi)_______.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,且a1=1,an+1=2Sn+1(1)求數(shù)列{an}(2)設(shè)cn=bnan,求數(shù)列18.(12分)已知?jiǎng)訄AQ經(jīng)過(guò)定點(diǎn),且與定直線相切(其中a為常數(shù),且).記動(dòng)圓圓心Q的軌跡為曲線C.(1)求C的方程,并說(shuō)明C是什么曲線?(2)設(shè)點(diǎn)P的坐標(biāo)為,過(guò)點(diǎn)P作曲線C的切線,切點(diǎn)為A,若過(guò)點(diǎn)P的直線m與曲線C交于M,N兩點(diǎn),則是否存在直線m,使得?若存在,求出直線m斜率的取值范圍;若不存在,請(qǐng)說(shuō)明理由.19.(12分)如圖,設(shè)橢圓:,長(zhǎng)軸的右端點(diǎn)與拋物線:的焦點(diǎn)重合,且橢圓的離心率是.(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;(Ⅱ)過(guò)作直線交拋物線于,兩點(diǎn),過(guò)且與直線垂直的直線交橢圓于另一點(diǎn),求面積的最小值,以及取到最小值時(shí)直線的方程.20.(12分)設(shè)實(shí)數(shù)滿(mǎn)足.(1)若,求的取值范圍;(2)若,,求證:.21.(12分)的內(nèi)角的對(duì)邊分別為,已知.(1)求的大??;(2)若,求面積的最大值.22.(10分)已知函數(shù),若的解集為.(1)求的值;(2)若正實(shí)數(shù),,滿(mǎn)足,求證:.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.D【解析】
解一元二次不等式化簡(jiǎn)集合,再由集合的交集運(yùn)算可得選項(xiàng).【詳解】因?yàn)榧?,故選:D.【點(diǎn)睛】本題考查集合的交集運(yùn)算,屬于基礎(chǔ)題.2.B【解析】
由余弦的二倍角公式化簡(jiǎn)函數(shù)為,要想在括號(hào)內(nèi)構(gòu)造變?yōu)檎液瘮?shù),至少需要向左平移個(gè)單位長(zhǎng)度,即為答案.【詳解】由題可知,對(duì)其向左平移個(gè)單位長(zhǎng)度后,,其圖像關(guān)于坐標(biāo)原點(diǎn)對(duì)稱(chēng)故的最小值為故選:B【點(diǎn)睛】本題考查三角函數(shù)圖象性質(zhì)與平移變換,還考查了余弦的二倍角公式逆運(yùn)用,屬于簡(jiǎn)單題.3.A【解析】
根據(jù)函數(shù)解析式,可知的定義域?yàn)?,通過(guò)定義法判斷函數(shù)的奇偶性,得出,則為偶函數(shù),可排除選項(xiàng),觀察選項(xiàng)的圖象,可知代入,解得,排除選項(xiàng),即可得出答案.【詳解】解:因?yàn)?,所以的定義域?yàn)?,則,∴為偶函數(shù),圖象關(guān)于軸對(duì)稱(chēng),排除選項(xiàng),且當(dāng)時(shí),,排除選項(xiàng),所以正確.故選:A.【點(diǎn)睛】本題考查由函數(shù)解析式識(shí)別函數(shù)圖象,利用函數(shù)的奇偶性和特殊值法進(jìn)行排除.4.C【解析】
設(shè),則,利用和求得,即可.【詳解】設(shè),則,因?yàn)?則,所以,又,即,所以,所以,故選:C【點(diǎn)睛】本題考查復(fù)數(shù)的乘法法則的應(yīng)用,考查共軛復(fù)數(shù)的應(yīng)用.5.D【解析】
舉例判斷命題p與q的真假,再由復(fù)合命題的真假判斷得答案.【詳解】當(dāng)時(shí),故命題為假命題;記f(x)=ex﹣x的導(dǎo)數(shù)為f′(x)=ex,易知f(x)=ex﹣x(﹣∞,0)上遞減,在(0,+∞)上遞增,∴f(x)>f(0)=1>0,即,故命題為真命題;∴是假命題故選D【點(diǎn)睛】本題考查復(fù)合命題的真假判斷,考查全稱(chēng)命題與特稱(chēng)命題的真假,考查指對(duì)函數(shù)的圖象與性質(zhì),是基礎(chǔ)題.6.A【解析】
設(shè),因?yàn)椋玫?,利用直線的斜率公式,得到,結(jié)合基本不等式,即可求解.【詳解】由題意,拋物線的焦點(diǎn)坐標(biāo)為,設(shè),因?yàn)椋淳€段的中點(diǎn),所以,所以直線的斜率,當(dāng)且僅當(dāng),即時(shí)等號(hào)成立,所以直線的斜率的最大值為1.故選:A.【點(diǎn)睛】本題主要考查了拋物線的方程及其應(yīng)用,直線的斜率公式,以及利用基本不等式求最值的應(yīng)用,著重考查了推理與運(yùn)算能力,屬于中檔試題.7.B【解析】
先用定積分求得陰影部分一半的面積,再根據(jù)幾何概型概率公式可求得.【詳解】根據(jù)題意,陰影部分的面積的一半為:,于是此點(diǎn)取自陰影部分的概率為.又,故.故選B.【點(diǎn)睛】本題考查了幾何概型,定積分的計(jì)算以及幾何意義,屬于中檔題.8.B【解析】
先考慮奇偶性,再考慮特殊值,用排除法即可得到正確答案.【詳解】是奇函數(shù),排除C,D;,排除A.故選:B.【點(diǎn)睛】本題考查函數(shù)圖象的判斷,屬于??碱}.9.D【解析】由圖可知,收入最高值為萬(wàn)元,收入最低值為萬(wàn)元,其比是,故項(xiàng)正確;結(jié)余最高為月份,為,故項(xiàng)正確;至月份的收入的變化率為至月份的收入的變化率相同,故項(xiàng)正確;前個(gè)月的平均收入為萬(wàn)元,故項(xiàng)錯(cuò)誤.綜上,故選.10.D【解析】
利用是偶函數(shù)化簡(jiǎn),結(jié)合在區(qū)間上的單調(diào)性,比較出三者的大小關(guān)系.【詳解】是偶函數(shù),,而,因?yàn)樵谏线f減,,即.故選:D【點(diǎn)睛】本小題主要考查利用函數(shù)的奇偶性和單調(diào)性比較大小,屬于基礎(chǔ)題.11.D【解析】
根據(jù)雙曲線的定義可得的邊長(zhǎng)為,然后在中應(yīng)用余弦定理得的等式,從而求得離心率.【詳解】由題意,,又,∴,∴,在中,即,∴.故選:D.【點(diǎn)睛】本題考查求雙曲線的離心率,解題關(guān)鍵是應(yīng)用雙曲線的定義把到兩焦點(diǎn)距離用表示,然后用余弦定理建立關(guān)系式.12.D【解析】
確定點(diǎn)為外心,代入化簡(jiǎn)得到,,再根據(jù)計(jì)算得到答案.【詳解】由可知,點(diǎn)為外心,則,,又,所以①因?yàn)?,②?lián)立方程①②可得,,,因?yàn)?,所以,即.故選:【點(diǎn)睛】本題考查了向量模長(zhǎng)的計(jì)算,意在考查學(xué)生的計(jì)算能力.二、填空題:本題共4小題,每小題5分,共20分。13.127【解析】
已知條件化簡(jiǎn)可化為,等式兩邊同時(shí)除以,則有,通過(guò)求解方程可解得,即證得數(shù)列為等比數(shù)列,根據(jù)已知即可解得所求.【詳解】由..故答案為:.【點(diǎn)睛】本題考查通過(guò)遞推公式證明數(shù)列為等比數(shù)列,考查了等比的求和公式,考查學(xué)生分析問(wèn)題的能力,難度較易.14.答案不唯一,如【解析】
根據(jù)對(duì)基本函數(shù)的理解可得到滿(mǎn)足條件的函數(shù).【詳解】由題意,不妨設(shè),則在都成立,但是在是單調(diào)遞增的,在是單調(diào)遞減的,說(shuō)明原命題是假命題.所以本題答案為,答案不唯一,符合條件即可.【點(diǎn)睛】本題考查對(duì)基本初等函數(shù)的圖像和性質(zhì)的理解,關(guān)鍵是假設(shè)出一個(gè)在上不是單調(diào)遞減的函數(shù),再檢驗(yàn)是否滿(mǎn)足命題中的條件,屬基礎(chǔ)題.15.3000【解析】
根據(jù)正態(tài)曲線的對(duì)稱(chēng)性求出,進(jìn)而可求出身高高于的高中男生人數(shù).【詳解】解:全市30000名高中男生的身高(單位:)服從正態(tài)分布,且,則,該市身高高于的高中男生人數(shù)大約為.故答案為:.【點(diǎn)睛】本題考查正態(tài)曲線的對(duì)稱(chēng)性的應(yīng)用,是基礎(chǔ)題.16.2【解析】
求出焦點(diǎn)到漸近線的距離就可得到的等式,從而可求得離心率.【詳解】由題意,一條漸近線方程為,即,∴,由得,∴,,∴.故答案為:2.【點(diǎn)睛】本題考查求雙曲線的離心率,解題關(guān)鍵是求出焦點(diǎn)到漸近線的距離,從而得出一個(gè)關(guān)于的等式.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(1)an=(2)Tn【解析】
(1)利用an與Sn的遞推關(guān)系可以an的通項(xiàng)公式;P點(diǎn)代入直線方程得b【詳解】(1)由an+1=2S兩式相減得an+1-a又a2=2S1+1=3,所以a由點(diǎn)P(bn,bn+1則數(shù)列{bn(2)因?yàn)閏n=b則13兩式相減得:23所以Tn【點(diǎn)睛】用遞推關(guān)系an=Sn-18.(1),拋物線;(2)存在,.【解析】
(1)設(shè),易得,化簡(jiǎn)即得;(2)利用導(dǎo)數(shù)幾何意義可得,要使,只需.聯(lián)立直線m與拋物線方程,利用根與系數(shù)的關(guān)系即可解決.【詳解】(1)設(shè),由題意,得,化簡(jiǎn)得,所以動(dòng)圓圓心Q的軌跡方程為,它是以F為焦點(diǎn),以直線l為準(zhǔn)線的拋物線.(2)不妨設(shè).因?yàn)?,所以,從而直線PA的斜率為,解得,即,又,所以軸.要使,只需.設(shè)直線m的方程為,代入并整理,得.首先,,解得或.其次,設(shè),,則,..故存在直線m,使得,此時(shí)直線m的斜率的取值范圍為.【點(diǎn)睛】本題考查直線與拋物線位置關(guān)系的應(yīng)用,涉及拋物線中的存在性問(wèn)題,考查學(xué)生的計(jì)算能力,是一道中檔題.19.(Ⅰ);(Ⅱ)面積的最小值為9,.【解析】
(Ⅰ)由已知求出拋物線的焦點(diǎn)坐標(biāo)即得橢圓中的,再由離心率可求得,從而得值,得標(biāo)準(zhǔn)方程;(Ⅱ)設(shè)直線方程為,設(shè),把直線方程代入拋物線方程,化為的一元二次方程,由韋達(dá)定理得,由弦長(zhǎng)公式得,同理求得點(diǎn)的橫坐標(biāo),于是可得,將面積表示為參數(shù)的函數(shù),利用導(dǎo)數(shù)可求得最大值.【詳解】(Ⅰ)∵橢圓:,長(zhǎng)軸的右端點(diǎn)與拋物線:的焦點(diǎn)重合,∴,又∵橢圓的離心率是,∴,,∴橢圓的標(biāo)準(zhǔn)方程為.(Ⅱ)過(guò)點(diǎn)的直線的方程設(shè)為,設(shè),,聯(lián)立得,∴,,∴.過(guò)且與直線垂直的直線設(shè)為,聯(lián)立得,∴,故,∴,面積.令,則,,令,則,即時(shí),面積最小,即當(dāng)時(shí),面積的最小值為9,此時(shí)直線的方程為.【點(diǎn)睛】本題考查橢圓方程的求解,拋物線中弦長(zhǎng)的求解,涉及三角形面積范圍問(wèn)題,利用導(dǎo)數(shù)求函數(shù)的最值問(wèn)題,屬綜合困難題.20.(1)(2)證明見(jiàn)解析【解析】
(1)依題意可得,考慮到,則有再分類(lèi)討論可得;(2)要證明,即證,即證.利用基本不等式即可得證;【詳解】解:(1)由及,得,考慮到,則有,它可化為或即或前者無(wú)解,后者的解集為,綜上,的取值范圍是.(2)要證明,即證,由,得,即證.因?yàn)椋ó?dāng)且僅當(dāng),時(shí)取等號(hào)).所以成立,故成立.【點(diǎn)睛】本題考查分類(lèi)討論法解絕對(duì)值不等式,基本不等式的應(yīng)用,屬于中檔題.21.(1);(2).【解析】
(1)利用正弦定理將邊化角,結(jié)合誘導(dǎo)公式可化簡(jiǎn)邊角關(guān)系式,求得,根據(jù)可求得結(jié)果;(2)利用余弦定理可得,利用基本不等式可求得,代入三角形面積公式可求得結(jié)果.【詳解】(1)由正弦定理得:,又,即由得:(2)由余弦定理得:又(
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年經(jīng)濟(jì)公司綜合崗筆試題及答案
- 2025年安徽省人事人才網(wǎng)考試及答案
- 2025年中學(xué)行政事業(yè)編考試及答案
- 2026年跨越歷史的春節(jié)與家族傳承
- 2025年中南大學(xué)輔導(dǎo)員筆試題及答案
- 2025年柏鄉(xiāng)教資筆試答案
- 2025年國(guó)企巡檢崗筆試題庫(kù)及答案
- 2026年人工智能算法工程師實(shí)戰(zhàn)技能提升培訓(xùn)
- 2026年老舊小區(qū)改造政策落實(shí)情況分析
- 2025年公職編制筆試及答案
- 總經(jīng)理聘用管理辦法
- 長(zhǎng)護(hù)險(xiǎn)護(hù)理培訓(xùn)
- DB34∕T 4648-2023 鋼結(jié)構(gòu)橋梁頂推施工技術(shù)規(guī)程
- 2025年時(shí)政100題(附答案)
- 貸款用別人名字協(xié)議書(shū)
- 寺院圍墻修繕?lè)桨?3篇)
- 麻醉科PDCA持續(xù)改進(jìn)麻醉術(shù)后鎮(zhèn)痛
- 6.3+基層群眾自治制度+課件高中政治統(tǒng)編版必修三政治與法治
- 村級(jí)公路管護(hù)協(xié)議書(shū)
- 班級(jí)思想教育工作
- 銀行消保投訴分析培訓(xùn)
評(píng)論
0/150
提交評(píng)論