山東、湖北重點(diǎn)中學(xué)2022年高三第二次診斷性檢測(cè)數(shù)學(xué)試卷含解析_第1頁(yè)
山東、湖北重點(diǎn)中學(xué)2022年高三第二次診斷性檢測(cè)數(shù)學(xué)試卷含解析_第2頁(yè)
山東、湖北重點(diǎn)中學(xué)2022年高三第二次診斷性檢測(cè)數(shù)學(xué)試卷含解析_第3頁(yè)
山東、湖北重點(diǎn)中學(xué)2022年高三第二次診斷性檢測(cè)數(shù)學(xué)試卷含解析_第4頁(yè)
山東、湖北重點(diǎn)中學(xué)2022年高三第二次診斷性檢測(cè)數(shù)學(xué)試卷含解析_第5頁(yè)
已閱讀5頁(yè),還剩16頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2021-2022高考數(shù)學(xué)模擬試卷請(qǐng)考生注意:1.請(qǐng)用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請(qǐng)用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫(xiě)在答題紙相應(yīng)的答題區(qū)內(nèi)。寫(xiě)在試題卷、草稿紙上均無(wú)效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知是等差數(shù)列的前項(xiàng)和,,,則()A.85 B. C.35 D.2.已知點(diǎn),是函數(shù)的函數(shù)圖像上的任意兩點(diǎn),且在點(diǎn)處的切線與直線AB平行,則()A.,b為任意非零實(shí)數(shù) B.,a為任意非零實(shí)數(shù)C.a(chǎn)、b均為任意實(shí)數(shù) D.不存在滿足條件的實(shí)數(shù)a,b3.已知是橢圓和雙曲線的公共焦點(diǎn),是它們的-一個(gè)公共點(diǎn),且,設(shè)橢圓和雙曲線的離心率分別為,則的關(guān)系為()A. B.C. D.4.已知集合,則=()A. B. C. D.5.《九章算術(shù)》“少?gòu)V”算法中有這樣一個(gè)數(shù)的序列:列出“全步”(整數(shù)部分)及諸分子分母,以最下面的分母遍乘各分子和“全步”,各自以分母去約其分子,將所得能通分之分?jǐn)?shù)進(jìn)行通分約簡(jiǎn),又用最下面的分母去遍乘諸(未通者)分子和以通之?dāng)?shù),逐個(gè)照此同樣方法,直至全部為整數(shù),例如:及時(shí),如圖:記為每個(gè)序列中最后一列數(shù)之和,則為()A.147 B.294 C.882 D.17646.如圖,棱長(zhǎng)為的正方體中,為線段的中點(diǎn),分別為線段和棱上任意一點(diǎn),則的最小值為()A. B. C. D.7.已知函數(shù)的導(dǎo)函數(shù)為,記,,…,N.若,則()A. B. C. D.8.設(shè),則A. B. C. D.9.若復(fù)數(shù)滿足,則()A. B. C.2 D.10.函數(shù)在區(qū)間上的大致圖象如圖所示,則可能是()A.B.C.D.11.如圖是一個(gè)算法流程圖,則輸出的結(jié)果是()A. B. C. D.12.方程在區(qū)間內(nèi)的所有解之和等于()A.4 B.6 C.8 D.10二、填空題:本題共4小題,每小題5分,共20分。13.函數(shù)的定義域?yàn)?,其圖象如圖所示.函數(shù)是定義域?yàn)榈钠婧瘮?shù),滿足,且當(dāng)時(shí),.給出下列三個(gè)結(jié)論:①;②函數(shù)在內(nèi)有且僅有個(gè)零點(diǎn);③不等式的解集為.其中,正確結(jié)論的序號(hào)是________.14.已知雙曲線的一條漸近線為,則焦點(diǎn)到這條漸近線的距離為_(kāi)____.15.我國(guó)著名的數(shù)學(xué)家秦九韶在《數(shù)書(shū)九章》提出了“三斜求積術(shù)”.他把三角形的三條邊分別稱(chēng)為小斜、中斜和大斜.三斜求積術(shù)就是用小斜平方加上大斜平方,送到中斜平方,取相減后余數(shù)的一半,自乘而得一個(gè)數(shù),小斜平方乘以大斜平方,送到上面得到的那個(gè)數(shù),相減后余數(shù)被4除,所得的數(shù)作為“實(shí)”,1作為“隅”,開(kāi)平方后即得面積.所謂“實(shí)”、“隅”指的是在方程中,p為“隅”,q為“實(shí)”.即若的大斜、中斜、小斜分別為a,b,c,則.已知點(diǎn)D是邊AB上一點(diǎn),,,,,則的面積為_(kāi)_______.16.函數(shù)(為自然對(duì)數(shù)的底數(shù),),若函數(shù)恰有個(gè)零點(diǎn),則實(shí)數(shù)的取值范圍為_(kāi)_________________.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知數(shù)列滿足,.(1)求數(shù)列的通項(xiàng)公式;(2)若,求數(shù)列的前項(xiàng)和.18.(12分)已知函數(shù)(1)若對(duì)任意恒成立,求實(shí)數(shù)的取值范圍;(2)求證:19.(12分)在四棱錐的底面是菱形,底面,,分別是的中點(diǎn),.(Ⅰ)求證:;(Ⅱ)求直線與平面所成角的正弦值;(III)在邊上是否存在點(diǎn),使與所成角的余弦值為,若存在,確定點(diǎn)的位置;若不存在,說(shuō)明理由.20.(12分)已知函數(shù),不等式的解集為.(1)求實(shí)數(shù),的值;(2)若,,,求證:.21.(12分)已知函數(shù)(是自然對(duì)數(shù)的底數(shù),).(1)求函數(shù)的圖象在處的切線方程;(2)若函數(shù)在區(qū)間上單調(diào)遞增,求實(shí)數(shù)的取值范圍;(3)若函數(shù)在區(qū)間上有兩個(gè)極值點(diǎn),且恒成立,求滿足條件的的最小值(極值點(diǎn)是指函數(shù)取極值時(shí)對(duì)應(yīng)的自變量的值).22.(10分)設(shè)函數(shù).(1)當(dāng)時(shí),解不等式;(2)若的解集為,,求證:.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.B【解析】

將已知條件轉(zhuǎn)化為的形式,求得,由此求得.【詳解】設(shè)公差為,則,所以,,,.故選:B【點(diǎn)睛】本小題主要考查等差數(shù)列通項(xiàng)公式的基本量計(jì)算,考查等差數(shù)列前項(xiàng)和的計(jì)算,屬于基礎(chǔ)題.2.A【解析】

求得的導(dǎo)函數(shù),結(jié)合兩點(diǎn)斜率公式和兩直線平行的條件:斜率相等,化簡(jiǎn)可得,為任意非零實(shí)數(shù).【詳解】依題意,在點(diǎn)處的切線與直線AB平行,即有,所以,由于對(duì)任意上式都成立,可得,為非零實(shí)數(shù).故選:A【點(diǎn)睛】本題考查導(dǎo)數(shù)的運(yùn)用,求切線的斜率,考查兩點(diǎn)的斜率公式,以及化簡(jiǎn)運(yùn)算能力,屬于中檔題.3.A【解析】

設(shè)橢圓的半長(zhǎng)軸長(zhǎng)為,雙曲線的半長(zhǎng)軸長(zhǎng)為,根據(jù)橢圓和雙曲線的定義得:,解得,然后在中,由余弦定理得:,化簡(jiǎn)求解.【詳解】設(shè)橢圓的長(zhǎng)半軸長(zhǎng)為,雙曲線的長(zhǎng)半軸長(zhǎng)為,由橢圓和雙曲線的定義得:,解得,設(shè),在中,由余弦定理得:,化簡(jiǎn)得,即.故選:A【點(diǎn)睛】本題主要考查橢圓,雙曲線的定義和性質(zhì)以及余弦定理的應(yīng)用,還考查了運(yùn)算求解的能力,屬于中檔題.4.D【解析】

先求出集合A,B,再求集合B的補(bǔ)集,然后求【詳解】,所以.故選:D【點(diǎn)睛】此題考查的是集合的并集、補(bǔ)集運(yùn)算,屬于基礎(chǔ)題.5.A【解析】

根據(jù)題目所給的步驟進(jìn)行計(jì)算,由此求得的值.【詳解】依題意列表如下:上列乘上列乘上列乘630603153021020156121510所以.故選:A【點(diǎn)睛】本小題主要考查合情推理,考查中國(guó)古代數(shù)學(xué)文化,屬于基礎(chǔ)題.6.D【解析】

取中點(diǎn),過(guò)作面,可得為等腰直角三角形,由,可得,當(dāng)時(shí),最小,由,故,即可求解.【詳解】取中點(diǎn),過(guò)作面,如圖:則,故,而對(duì)固定的點(diǎn),當(dāng)時(shí),最?。藭r(shí)由面,可知為等腰直角三角形,,故.故選:D【點(diǎn)睛】本題考查了空間幾何體中的線面垂直、考查了學(xué)生的空間想象能力,屬于中檔題.7.D【解析】

通過(guò)計(jì)算,可得,最后計(jì)算可得結(jié)果.【詳解】由題可知:所以所以猜想可知:由所以所以故選:D【點(diǎn)睛】本題考查導(dǎo)數(shù)的計(jì)算以及不完全歸納法的應(yīng)用,選擇題、填空題可以使用取特殊值,歸納猜想等方法的使用,屬中檔題.8.C【解析】分析:利用復(fù)數(shù)的除法運(yùn)算法則:分子、分母同乘以分母的共軛復(fù)數(shù),化簡(jiǎn)復(fù)數(shù),然后求解復(fù)數(shù)的模.詳解:,則,故選c.點(diǎn)睛:復(fù)數(shù)是高考中的必考知識(shí),主要考查復(fù)數(shù)的概念及復(fù)數(shù)的運(yùn)算.要注意對(duì)實(shí)部、虛部的理解,掌握純虛數(shù)、共軛復(fù)數(shù)這些重要概念,復(fù)數(shù)的運(yùn)算主要考查除法運(yùn)算,通過(guò)分母實(shí)數(shù)化轉(zhuǎn)化為復(fù)數(shù)的乘法,運(yùn)算時(shí)特別要注意多項(xiàng)式相乘后的化簡(jiǎn),防止簡(jiǎn)單問(wèn)題出錯(cuò),造成不必要的失分.9.D【解析】

把已知等式變形,利用復(fù)數(shù)代數(shù)形式的乘除運(yùn)算化簡(jiǎn),再由復(fù)數(shù)模的計(jì)算公式計(jì)算.【詳解】解:由題意知,,,∴,故選:D.【點(diǎn)睛】本題考查復(fù)數(shù)代數(shù)形式的乘除運(yùn)算,考查復(fù)數(shù)模的求法.10.B【解析】

根據(jù)特殊值及函數(shù)的單調(diào)性判斷即可;【詳解】解:當(dāng)時(shí),,無(wú)意義,故排除A;又,則,故排除D;對(duì)于C,當(dāng)時(shí),,所以不單調(diào),故排除C;故選:B【點(diǎn)睛】本題考查根據(jù)函數(shù)圖象選擇函數(shù)解析式,這類(lèi)問(wèn)題利用特殊值與排除法是最佳選擇,屬于基礎(chǔ)題.11.A【解析】

執(zhí)行程序框圖,逐次計(jì)算,根據(jù)判斷條件終止循環(huán),即可求解,得到答案.【詳解】由題意,執(zhí)行上述的程序框圖:第1次循環(huán):滿足判斷條件,;第2次循環(huán):滿足判斷條件,;第3次循環(huán):滿足判斷條件,;不滿足判斷條件,輸出計(jì)算結(jié)果,故選A.【點(diǎn)睛】本題主要考查了循環(huán)結(jié)構(gòu)的程序框圖的結(jié)果的計(jì)算與輸出,其中解答中執(zhí)行程序框圖,逐次計(jì)算,根據(jù)判斷條件終止循環(huán)是解答的關(guān)鍵,著重考查了運(yùn)算與求解能力,屬于基礎(chǔ)題.12.C【解析】

畫(huà)出函數(shù)和的圖像,和均關(guān)于點(diǎn)中心對(duì)稱(chēng),計(jì)算得到答案.【詳解】,驗(yàn)證知不成立,故,畫(huà)出函數(shù)和的圖像,易知:和均關(guān)于點(diǎn)中心對(duì)稱(chēng),圖像共有8個(gè)交點(diǎn),故所有解之和等于.故選:.【點(diǎn)睛】本題考查了方程解的問(wèn)題,意在考查學(xué)生的計(jì)算能力和應(yīng)用能力,確定函數(shù)關(guān)于點(diǎn)中心對(duì)稱(chēng)是解題的關(guān)鍵.二、填空題:本題共4小題,每小題5分,共20分。13.①③【解析】

利用奇函數(shù)和,得出函數(shù)的周期為,由圖可直接判斷①;利用賦值法求得,結(jié)合,進(jìn)而可判斷函數(shù)在內(nèi)的零點(diǎn)個(gè)數(shù),可判斷②的正誤;采用換元法,結(jié)合圖象即可得解,可判斷③的正誤.綜合可得出結(jié)論.【詳解】因?yàn)楹瘮?shù)是奇函數(shù),所以,又,所以,即,所以,函數(shù)的周期為.對(duì)于①,由于函數(shù)是上的奇函數(shù),所以,,故①正確;對(duì)于②,,令,可得,得,所以,函數(shù)在區(qū)間上的零點(diǎn)為和.因?yàn)楹瘮?shù)的周期為,所以函數(shù)在內(nèi)有個(gè)零點(diǎn),分別是、、、、,故②錯(cuò)誤;對(duì)于③,令,則需求的解集,由圖象可知,,所以,故③正確.故答案為:①③.【點(diǎn)睛】本題考查函數(shù)的圖象與性質(zhì),涉及奇偶性、周期性和零點(diǎn)等知識(shí)點(diǎn),考查學(xué)生分析問(wèn)題的能力和數(shù)形結(jié)合能力,屬于中等題.14.2.【解析】

由雙曲線的一條漸近線為,解得.求出雙曲線的右焦點(diǎn),利用點(diǎn)到直線的距離公式求解即可.【詳解】雙曲線的一條漸近線為解得:雙曲線的右焦點(diǎn)為焦點(diǎn)到這條漸近線的距離為:本題正確結(jié)果:【點(diǎn)睛】本題考查了雙曲線和的標(biāo)準(zhǔn)方程及其性質(zhì),涉及到點(diǎn)到直線距離公式的考查,屬于基礎(chǔ)題.15..【解析】

利用正切的和角公式求得,再求得,利用余弦定理求得,代入“三斜求積術(shù)”公式即可求得答案.【詳解】,所以,由余弦定理可知,得.根據(jù)“三斜求積術(shù)”可得,所以.【點(diǎn)睛】本題考查正切的和角公式,同角三角函數(shù)的基本關(guān)系式,余弦定理的應(yīng)用,考查學(xué)生分析問(wèn)題的能力和計(jì)算整理能力,難度較易.16.【解析】

令,則,恰有四個(gè)解.由判斷函數(shù)增減性,求出最小值,列出相應(yīng)不等式求解得出的取值范圍.【詳解】解:令,則,恰有四個(gè)解.有兩個(gè)解,由,可得在上單調(diào)遞減,在上單調(diào)遞增,則,可得.設(shè)的負(fù)根為,由題意知,,,,則,.故答案為:.【點(diǎn)睛】本題考查導(dǎo)數(shù)在函數(shù)當(dāng)中的應(yīng)用,屬于難題.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(1);(2)【解析】

(1)根據(jù)遞推公式,用配湊法構(gòu)造等比數(shù)列,求其通項(xiàng)公式,進(jìn)而求出的通項(xiàng)公式;(2)求出數(shù)列的通項(xiàng)公式,利用錯(cuò)位相減法求數(shù)列的前項(xiàng)和.【詳解】解:(1),,是首項(xiàng)為,公比為的等比數(shù)列.所以,.(2).【點(diǎn)睛】本題考查了由數(shù)列的遞推公式求通項(xiàng)公式,錯(cuò)位相減法求數(shù)列的前n項(xiàng)和的問(wèn)題,屬于中檔題.18.(1);(2)見(jiàn)解析.【解析】

(1)將問(wèn)題轉(zhuǎn)化為對(duì)任意恒成立,換元構(gòu)造新函數(shù)即可得解;(2)結(jié)合(1)可得,令,求導(dǎo)后證明其導(dǎo)函數(shù)單調(diào)遞增,結(jié)合,即可得函數(shù)的單調(diào)區(qū)間和最小值,即可得證.【詳解】(1)對(duì)任意恒成立等價(jià)于對(duì)任意恒成立,令,,則,當(dāng)時(shí),,單調(diào)遞增;當(dāng)時(shí),,單調(diào)遞減;有最大值,.(2)證明:由(1)知,當(dāng)時(shí),即,,,令,則,令,則,在上是增函數(shù),又,當(dāng)時(shí),;當(dāng)時(shí),,在上是減函數(shù),在上是增函數(shù),,即,.【點(diǎn)睛】本題考查了利用導(dǎo)數(shù)解決恒成立問(wèn)題,考查了利用導(dǎo)數(shù)證明不等式,考查了計(jì)算能力和轉(zhuǎn)化化歸思想,屬于中檔題.19.(Ⅰ)見(jiàn)解析;(Ⅱ);(Ⅲ)見(jiàn)解析.【解析】

(Ⅰ)由題意結(jié)合幾何關(guān)系可證得平面,據(jù)此證明題中的結(jié)論即可;(Ⅱ)建立空間直角坐標(biāo)系,求得直線的方向向量與平面的一個(gè)法向量,然后求解線面角的正弦值即可;(Ⅲ)假設(shè)滿足題意的點(diǎn)存在,設(shè),由直線與的方向向量得到關(guān)于的方程,解方程即可確定點(diǎn)F的位置.【詳解】(Ⅰ)由菱形的性質(zhì)可得:,結(jié)合三角形中位線的性質(zhì)可知:,故,底面,底面,故,且,故平面,平面,(Ⅱ)由題意結(jié)合菱形的性質(zhì)易知,,,以點(diǎn)O為坐標(biāo)原點(diǎn),建立如圖所示的空間直角坐標(biāo)系,則:,設(shè)平面的一個(gè)法向量為,則:,據(jù)此可得平面的一個(gè)法向量為,而,設(shè)直線與平面所成角為,則.(Ⅲ)由題意可得:,假設(shè)滿足題意的點(diǎn)存在,設(shè),,據(jù)此可得:,即:,從而點(diǎn)F的坐標(biāo)為,據(jù)此可得:,,結(jié)合題意有:,解得:.故點(diǎn)F為中點(diǎn)時(shí)滿足題意.【點(diǎn)睛】本題主要考查線面垂直的判定定理與性質(zhì)定理,線面角的向量求法,立體幾何中的探索性問(wèn)題等知識(shí),意在考查學(xué)生的轉(zhuǎn)化能力和計(jì)算求解能力.20.(1),.(2)見(jiàn)解析【解析】

(1)分三種情況討論即可(2)將,的值代入,然后利用均值定理即可.【詳解】解:(1)不等式可化為.即有或或.解得,或或.所以不等式的解集為,故,.(2)由(1)知,,即,由,得,,當(dāng)且僅當(dāng),即,時(shí)等號(hào)成立.故,即.【點(diǎn)睛】考查絕對(duì)值不等式的解法以及用均值定理證明不等式,中檔題.21.(1);(2);(3).【解析】

(1)利用導(dǎo)數(shù)的幾何意義計(jì)算即可;(2)在上恒成立,只需,注意到;(3)在上有兩根,令,求導(dǎo)可得在上單調(diào)遞減,在上單調(diào)遞增,所以且,,,求出的范圍即可.【詳解】(1)因?yàn)?,所以,?dāng)時(shí),,所以切線方程為,即.(2),.因?yàn)楹瘮?shù)在區(qū)間上單調(diào)遞增,所以,且恒成立,即,所以,即,又,故,所以實(shí)數(shù)的取值范圍是.(3).因?yàn)楹瘮?shù)在區(qū)間上有兩個(gè)極值點(diǎn),所以方程在上有兩不等實(shí)根,即.令,則,由,得,所以在上單調(diào)遞減,在上單調(diào)遞增,所以,解得且.又由,所以,且當(dāng)和時(shí),單調(diào)遞增,當(dāng)時(shí),單調(diào)遞減,是極值點(diǎn),此時(shí)令,則,所以在上單調(diào)遞減,所以.因?yàn)楹愠闪ⅲ?若,取,則,所以.令,則,.當(dāng)時(shí),;當(dāng)時(shí),.所以,所以在上單調(diào)遞增,所以,即存在使得,不合題意.滿足條件的的最小值為-4.【點(diǎn)睛】本題考查導(dǎo)數(shù)的綜合應(yīng)用,涉及到導(dǎo)數(shù)的幾何意義,利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性、極值點(diǎn),不等式恒成立等

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論