浙江省嘉興嘉善高級中學2022年高三第二次調(diào)研數(shù)學試卷含解析_第1頁
浙江省嘉興嘉善高級中學2022年高三第二次調(diào)研數(shù)學試卷含解析_第2頁
浙江省嘉興嘉善高級中學2022年高三第二次調(diào)研數(shù)學試卷含解析_第3頁
浙江省嘉興嘉善高級中學2022年高三第二次調(diào)研數(shù)學試卷含解析_第4頁
浙江省嘉興嘉善高級中學2022年高三第二次調(diào)研數(shù)學試卷含解析_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

2021-2022高考數(shù)學模擬試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知為定義在上的偶函數(shù),當時,,則()A. B. C. D.2.數(shù)列滿足,且,,則()A. B.9 C. D.73.函數(shù)的圖象的大致形狀是()A. B. C. D.4.若P是的充分不必要條件,則p是q的()A.充分不必要條件B.必要不充分條件C.充要條件D.既不充分也不必要條件5.已知函數(shù),則()A.函數(shù)在上單調(diào)遞增 B.函數(shù)在上單調(diào)遞減C.函數(shù)圖像關于對稱 D.函數(shù)圖像關于對稱6.若與互為共軛復數(shù),則()A.0 B.3 C.-1 D.47.設是虛數(shù)單位,,,則()A. B. C.1 D.28.在復平面內(nèi),復數(shù)(為虛數(shù)單位)的共軛復數(shù)對應的點位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限9.已知命題p:“”是“”的充要條件;,,則()A.為真命題 B.為真命題C.為真命題 D.為假命題10.已知平面向量,,,則實數(shù)x的值等于()A.6 B.1 C. D.11.“是函數(shù)在區(qū)間內(nèi)單調(diào)遞增”的()A.充分不必要條件 B.必要不充分條件C.充分必要條件 D.既不充分也不必要條件12.已知集合,B={y∈N|y=x﹣1,x∈A},則A∪B=()A.{﹣1,0,1,2,3} B.{﹣1,0,1,2} C.{0,1,2} D.{x﹣1≤x≤2}二、填空題:本題共4小題,每小題5分,共20分。13.如圖是一個幾何體的三視圖,若它的體積是,則_________,該幾何體的表面積為_________.14.記等差數(shù)列和的前項和分別為和,若,則______.15.已知函數(shù)在處的切線與直線平行,則為________.16.西周初數(shù)學家商高在公元前1000年發(fā)現(xiàn)勾股定理的一個特例:勾三,股四,弦五.此發(fā)現(xiàn)早于畢達哥拉斯定理五百到六百年.我們把可以構成一個直角三角形三邊的一組正整數(shù)稱為勾股數(shù).現(xiàn)從3,4,5,6,7,8,9,10,11,12,13這11個數(shù)中隨機抽取3個數(shù),則這3個數(shù)能構成勾股數(shù)的概率為__________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖,三棱臺中,側(cè)面與側(cè)面是全等的梯形,若,且.(Ⅰ)若,,證明:∥平面;(Ⅱ)若二面角為,求平面與平面所成的銳二面角的余弦值.18.(12分)如圖在直角中,為直角,,,分別為,的中點,將沿折起,使點到達點的位置,連接,,為的中點.(Ⅰ)證明:面;(Ⅱ)若,求二面角的余弦值.19.(12分)在①,②,③這三個條件中任選一個,補充在下面問題中.若問題中的正整數(shù)存在,求的值;若不存在,說明理由.設正數(shù)等比數(shù)列的前項和為,是等差數(shù)列,__________,,,,是否存在正整數(shù),使得成立?20.(12分)已知函數(shù),曲線在點處的切線在y軸上的截距為.(1)求a;(2)討論函數(shù)和的單調(diào)性;(3)設,求證:.21.(12分)已知集合,,,將的所有子集任意排列,得到一個有序集合組,其中.記集合中元素的個數(shù)為,,,規(guī)定空集中元素的個數(shù)為.當時,求的值;利用數(shù)學歸納法證明:不論為何值,總存在有序集合組,滿足任意,,都有.22.(10分)已知橢圓的長軸長為,離心率(1)求橢圓的方程;(2)設分別為橢圓與軸正半軸和軸正半軸的交點,是橢圓上在第一象限的一點,直線與軸交于點,直線與軸交于點,問與面積之差是否為定值?說明理由.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.D【解析】

判斷,利用函數(shù)的奇偶性代入計算得到答案.【詳解】∵,∴.故選:【點睛】本題考查了利用函數(shù)的奇偶性求值,意在考查學生對于函數(shù)性質(zhì)的靈活運用.2.A【解析】

先由題意可得數(shù)列為等差數(shù)列,再根據(jù),,可求出公差,即可求出.【詳解】數(shù)列滿足,則數(shù)列為等差數(shù)列,,,,,,,故選:.【點睛】本題主要考查了等差數(shù)列的性質(zhì)和通項公式的求法,意在考查學生對這些知識的理解掌握水平,屬于基礎題.3.B【解析】

根據(jù)函數(shù)奇偶性,可排除D;求得及,由導函數(shù)符號可判斷在上單調(diào)遞增,即可排除AC選項.【詳解】函數(shù)易知為奇函數(shù),故排除D.又,易知當時,;又當時,,故在上單調(diào)遞增,所以,綜上,時,,即單調(diào)遞增.又為奇函數(shù),所以在上單調(diào)遞增,故排除A,C.故選:B【點睛】本題考查了根據(jù)函數(shù)解析式判斷函數(shù)圖象,導函數(shù)性質(zhì)與函數(shù)圖象關系,屬于中檔題.4.B【解析】

試題分析:通過逆否命題的同真同假,結合充要條件的判斷方法判定即可.由p是的充分不必要條件知“若p則”為真,“若則p”為假,根據(jù)互為逆否命題的等價性知,“若q則”為真,“若則q”為假,故選B.考點:邏輯命題5.C【解析】

依題意可得,即函數(shù)圖像關于對稱,再求出函數(shù)的導函數(shù),即可判斷函數(shù)的單調(diào)性;【詳解】解:由,,所以函數(shù)圖像關于對稱,又,在上不單調(diào).故正確的只有C,故選:C【點睛】本題考查函數(shù)的對稱性的判定,利用導數(shù)判斷函數(shù)的單調(diào)性,屬于基礎題.6.C【解析】

計算,由共軛復數(shù)的概念解得即可.【詳解】,又由共軛復數(shù)概念得:,.故選:C【點睛】本題主要考查了復數(shù)的運算,共軛復數(shù)的概念.7.C【解析】

由,可得,通過等號左右實部和虛部分別相等即可求出的值.【詳解】解:,,解得:.故選:C.【點睛】本題考查了復數(shù)的運算,考查了復數(shù)相等的涵義.對于復數(shù)的運算類問題,易錯點是把當成進行運算.8.D【解析】

將復數(shù)化簡得,,即可得到對應的點為,即可得出結果.【詳解】,對應的點位于第四象限.故選:.【點睛】本題考查復數(shù)的四則運算,考查共軛復數(shù)和復數(shù)與平面內(nèi)點的對應,難度容易.9.B【解析】

由的單調(diào)性,可判斷p是真命題;分類討論打開絕對值,可得q是假命題,依次分析即得解【詳解】由函數(shù)是R上的增函數(shù),知命題p是真命題.對于命題q,當,即時,;當,即時,,由,得,無解,因此命題q是假命題.所以為假命題,A錯誤;為真命題,B正確;為假命題,C錯誤;為真命題,D錯誤.故選:B【點睛】本題考查了命題的邏輯連接詞,考查了學生邏輯推理,分類討論,數(shù)學運算的能力,屬于中檔題.10.A【解析】

根據(jù)向量平行的坐標表示即可求解.【詳解】,,,,即,故選:A【點睛】本題主要考查了向量平行的坐標運算,屬于容易題.11.C【解析】,令解得當,的圖像如下圖當,的圖像如下圖由上兩圖可知,是充要條件【考點定位】考查充分條件和必要條件的概念,以及函數(shù)圖像的畫法.12.A【解析】

解出集合A和B即可求得兩個集合的并集.【詳解】∵集合{x∈Z|﹣2<x≤3}={﹣1,0,1,2,3},B={y∈N|y=x﹣1,x∈A}={﹣2,﹣1,0,1,2},∴A∪B={﹣2,﹣1,0,1,2,3}.故選:A.【點睛】此題考查求集合的并集,關鍵在于準確求解不等式,根據(jù)描述法表示的集合,準確寫出集合中的元素.二、填空題:本題共4小題,每小題5分,共20分。13.;【解析】試題分析:如圖:此幾何體是四棱錐,底面是邊長為的正方形,平面平面,并且,,所以體積是,解得,四個側(cè)面都是直角三角形,所以計算出邊長,表面積是考點:1.三視圖;2.幾何體的表面積.14.【解析】

結合等差數(shù)列的前項和公式,可得,求解即可.【詳解】由題意,,,因為,所以.故答案為:.【點睛】本題考查了等差數(shù)列的前項和公式及等差中項的應用,考查了學生的計算求解能力,屬于基礎題.15.【解析】

根據(jù)題意得出,由此可得出實數(shù)的值.【詳解】,,直線的斜率為,由于函數(shù)在處的切線與直線平行,則.故答案為:.【點睛】本題考查利用函數(shù)的切線與直線平行求參數(shù),解題時要結合兩直線的位置關系得出兩直線斜率之間的關系,考查計算能力,屬于基礎題.16.【解析】

由組合數(shù)結合古典概型求解即可【詳解】從11個數(shù)中隨機抽取3個數(shù)有種不同的方法,其中能構成勾股數(shù)的有共三種,所以,所求概率為.故答案為【點睛】本題考查古典概型與數(shù)學文化,考查組合問題,數(shù)據(jù)處理能力和應用意識.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(Ⅰ)見解析;(Ⅱ).【解析】試題分析:(Ⅰ)連接,由比例可得∥,進而得線面平行;(Ⅱ)過點作的垂線,建立空間直角坐標系,不妨設,則求得平面的法向量為,設平面的法向量為,由求二面角余弦即可.試題解析:(Ⅰ)證明:連接,梯形,,易知:;又,則∥;平面,平面,可得:∥平面;(Ⅱ)側(cè)面是梯形,,,,則為二面角的平面角,;均為正三角形,在平面內(nèi),過點作的垂線,如圖建立空間直角坐標系,不妨設,則,故點,;設平面的法向量為,則有:;設平面的法向量為,則有:;,故平面與平面所成的銳二面角的余弦值為.18.(Ⅰ)詳見解析;(Ⅱ).【解析】

(Ⅰ)取中點,連結、,四邊形是平行四邊形,由,,得,從而,,求出,由此能證明.(Ⅱ)以為原點,、、所在直線分別為,,軸,建立空間直角坐標系,利用向量法能求出二面角的余弦值.【詳解】證明:(Ⅰ)取中點,連結、,∵,,∴四邊形是平行四邊形,∵,,,∴,∴,∴,在中,,又∵為的中點,∴,又∵,∴.解:(Ⅱ)∵,,,∴,以為原點,、、所在直線分別為,,軸,建立空間直角坐標系,設,則,,,,∴,,,設面的法向量,則,取,得,同理,得平面的法向量,設二面角的平面角為,則,∴二面角的余弦值為.【點睛】本題考查面面垂直及線面垂直性質(zhì)定理、線面垂直判定與性質(zhì)定理以及利用空間向量求線面角與二面角,考查基本分析求解能力,屬中檔題.19.見解析【解析】

根據(jù)等差數(shù)列性質(zhì)及、,可求得等差數(shù)列的通項公式,由即可求得的值;根據(jù)等式,變形可得,分別討論取①②③中的一個,結合等比數(shù)列通項公式代入化簡,檢驗是否存在正整數(shù)的值即可.【詳解】∵在等差數(shù)列中,,∴,∴公差,∴,∴,若存在正整數(shù),使得成立,即成立,設正數(shù)等比數(shù)列的公比為的公比為,若選①,∵,∴,∴,∴,∴當時,滿足成立.若選②,∵,∴,∴,∴,∴方程無正整數(shù)解,∴不存在正整數(shù)使得成立.若選③,∵,∴,∴,∴,∴解得或(舍去),∴,∴當時,滿足成立.【點睛】本題考查了等差數(shù)列通項公式的求法,等比數(shù)列通項公式及前n項和公式的應用,遞推公式的簡單應用,補充條件后求參數(shù)的值,屬于中檔題.20.(1)(2)為減函數(shù),為增函數(shù).(3)證明見解析【解析】

(1)求出導函數(shù),求出切線方程,令得切線的縱截距,可得(必須利用函數(shù)的單調(diào)性求解);(2)求函數(shù)的導數(shù),由導數(shù)的正負確定單調(diào)性;(3)不等式變形為,由遞減,得(),即,即,依次放縮,.不等式,遞增得(),,,,先證,然后同樣放縮得出結論.【詳解】解:(1)對求導,得.因此.又因為,所以曲線在點處的切線方程為,即.由題意,.顯然,適合上式.令,求導得,因此為增函數(shù):故是唯一解.(2)由(1)可知,,因為,所以為減函數(shù).因為,所以為增函數(shù).(3)證明:由,易得.由(2)可知,在上為減函數(shù).因此,當時,,即.令,得,即.因此,當時,.所以成立.下面證明:.由(2)可知,在上為增函數(shù).因此,當時,,即.因此,即.令,得,即.當時,.因為,所以,所以.所以,當時,.所以,當時,成立.綜上所述,當時,成立.【點睛】本題考查導數(shù)的幾何意義,考查用導數(shù)研究函數(shù)的單調(diào)性,考查用導數(shù)證明不等式.本題中不等式的證明,考查了轉(zhuǎn)化與化歸的能力,把不等式變形后利用第(2)小題函數(shù)的單調(diào)性得出數(shù)列的不等關系:,.這是最關鍵的一步.然后一步一步放縮即可證明.本題屬于困難題.21.;證明見解析.【解析】

當時,集合共有個子集,即可求出結果;分類討論,利用數(shù)學歸納法證明.【詳解】當時,集合共有個子集,所以;①當時,,由可知,,此時令,,,,滿足對任意,都有,且;②假設當時,存在有序集合組滿足題意,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論