2024屆廣西北海市中考數(shù)學(xué)五模試卷含解析_第1頁
2024屆廣西北海市中考數(shù)學(xué)五模試卷含解析_第2頁
2024屆廣西北海市中考數(shù)學(xué)五模試卷含解析_第3頁
2024屆廣西北海市中考數(shù)學(xué)五模試卷含解析_第4頁
2024屆廣西北海市中考數(shù)學(xué)五模試卷含解析_第5頁
已閱讀5頁,還剩18頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2024屆廣西北海市中考數(shù)學(xué)五模試卷

考生須知:

1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色

字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。

2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號。

3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。

一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)

如圖,的三邊AB,BC,CA的長分別為點是三條角平分線的交點,則。:S

1.AABC20,30,40,OAABCS.ABCO:SACAO

等于()

A.1:1:1B.1:2:3C.2:3:4D.3:4:5

2.如圖,E,B,F,C四點在一條直線上,EB=CF,ZA^ZD,再添一個條件仍不能證明△4BCgADEF的是()

C.ZE=ZABCD.AB//DE

3.如圖所示是小孔成像原理的示意圖,根據(jù)圖中所標(biāo)注的尺寸,求出這支蠟燭在暗盒中所成像CD的長()

C.—cmD.1cm

2

C.小D.一:

5.如圖,ABC內(nèi)接于DO,若NA=40,則1BCO=()

A.40B.50C.60D.80

6.下列四個幾何體中,左視圖為圓的是()

7.下列各式中,正確的是()

A.-(x-y)=-x-yB.-(-2)C.-~=~~D.雙;&=也

8.如圖是拋物線y=ax2+bx+c(a/0)的圖象的一部分,拋物線的頂點坐標(biāo)是A(1,4),與x軸的一個交點是B(3,

0),下列結(jié)論:①abc>0;②2a+b=0;③方程ax2+bx+c=4有兩個相等的實數(shù)根;④拋物線與x軸的另一個交點是(-

A.4個B.3個C.2個D.1個

9.“車輛隨機到達一個路口,遇到紅燈”這個事件是()

A.不可能事件B.不確定事件C.確定事件D.必然事件

10.下列運算正確的是()

A.-(a-1)=-a-1B.(2a3)2=4a6C.(a-b)2=a2-b2D.a3+a2=2a5

11.如圖,正六邊形ABCDEF內(nèi)接于。O,半徑為4,則這個正六邊形的邊心距OM和的長分別為()

(/3

4。[

A.2,三B.2\3f7tC.\\三D.2\?,-~

12.如圖是由5個大小相同的正方體組成的幾何體,則該幾何體的左視圖是()

二、填空題:(本大題共6個小題,每小題4分,共24分.)

13.在△ABC中,AB=13cm,AC=10cm,BC邊上的高為11cm,則△ABC的面積為cm1.

34

14.方程一;=—的解是—.

x-1x

15.如圖,矩形ABCD的對角線BD經(jīng)過坐標(biāo)原點,矩形的邊分別平行于坐標(biāo)軸,點C在反比例函數(shù)y='的圖象上,

x

若點A的坐標(biāo)為(-2,-2),則k的值為.

16.已知x(x+l)=x+l,貝!|x=.

17.計算:2cos60。一酶+(5—兀)。=.

18.如圖,△ABC是直角三角形,ZC=90°,四邊形ABDE是菱形且C、B、D共線,AD、BE交于點O,連接OC,

若BC=3,AC=4,貝!JtanNOCB=

三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.

2

19.(6分)(1)化簡:[1———m+2m+1

[m+2m2-4

x+3.

------->%+l

(2)解不等式組2

3+4(x-l)>-9

20.(6分)如圖,△ABC內(nèi)接與。O,AB是直徑,。。的切線PC交BA的延長線于點P,OF〃BC交AC于AC點

(2)若。O的半徑為4,AF=3,求AC的長.

21.(6分)(1)如圖1,半徑為2的圓O內(nèi)有一點P,切OP=1,弦AB過點P,則弦AB長度的最大值為

最小值為.

(2)如圖2,△ABC是葛叔叔家的菜地示意圖,其中NABC=90。,AB=80米,BC=60米,現(xiàn)在他利用周邊地的情況,

把原來的三角形地拓展成符合條件的面積盡可能大、周長盡可能長的四邊形地,用來建魚塘.已知葛叔叔想建的魚塘

是四邊形ABCD,且滿足NADC=60。,你認為葛叔叔的想法能實現(xiàn)嗎?若能,求出這個四邊形魚塘面積和周長的最大

值;若不能,請說明理由.

AB

圖②

22.(8分)某市扶貧辦在精準(zhǔn)扶貧工作中,組織30輛汽車裝運花椒、核桃、甘藍向外地銷售.按計劃30輛車都要裝

運,每輛汽車只能裝運同一種產(chǎn)品,且必須裝滿,根據(jù)下表提供的信息,解答以下問題:

產(chǎn)品名稱核桃花椒甘藍

每輛汽車運載量(噸)1064

每噸土特產(chǎn)利潤(萬元)0.70.80.5

若裝運核桃的汽車為x輛,裝運甘藍的車輛數(shù)是裝運核桃車輛數(shù)的2倍多1,假設(shè)30輛車裝運的三種產(chǎn)品的總利潤為

y萬元.求y與x之間的函數(shù)關(guān)系式;若裝花椒的汽車不超過8輛,求總利潤最大時,裝運各種產(chǎn)品的車輛數(shù)及總利

潤最大值.

23.(8分)某商店銷售10臺A型和20臺B型電腦的利潤為4000元,銷售20臺A型和10臺B型電腦的利潤為3500

元.求每臺A型電腦和B型電腦的銷售利潤;該商店計劃一次購進兩種型號的電腦共100臺,其中B型電腦的進貨量

不超過A型電腦的2倍,設(shè)購進A型電腦x臺,這100臺電腦的銷售總利潤為y元.

①求y關(guān)于x的函數(shù)關(guān)系式;

②該商店購進A型、B型電腦各多少臺,才能使銷售總利潤最大?實際進貨時,廠家對A型電腦出廠價下調(diào)m(0<

m<100)元,且限定商店最多購進A型電腦70臺,若商店保持同種電腦的售價不變,請你根據(jù)以上信息及(2)中條

件,設(shè)計出使這100臺電腦銷售總利潤最大的進貨方案.

24.(10分)如圖,二次函數(shù)y=-x?+3x+根的圖象與x軸的一個交點為6(4,0),另一個交點為A,且與y軸相交

于C點

x

(1)求,”的值及C點坐標(biāo);

(2)在直線5c上方的拋物線上是否存在一點使得它與8,C兩點構(gòu)成的三角形面積最大,若存在,求出此時M

點坐標(biāo);若不存在,請簡要說明理由

(3)P為拋物線上一點,它關(guān)于直線BC的對稱點為Q

①當(dāng)四邊形PBQC為菱形時,求點尸的坐標(biāo);

②點P的橫坐標(biāo)為X。(/<4),當(dāng),為何值時,四邊形PB0C的面積最大,請說明理由.

25.(10分)如圖,AB是。O的直徑,點C在。O上,CEAAB于E,CD平分DECB,交過點B的射線于D,交

AB于F,且BC=BD.

(1)求證:BD是。。的切線;

(2)若AE=9,CE=12,求BF的長.

26.(12分)某通訊公司推出了A,B兩種上寬帶網(wǎng)的收費方式(詳情見下表)

收麥方式月使用要元包月上網(wǎng)時間片超時費(元min)

A30250.05

B50500.05

設(shè)月上網(wǎng)時間為xh(x為非負整數(shù)),請根據(jù)表中提供的信息回答下列問題

(1)設(shè)方案A的收費金額為yi元,方案B的收費金額為yz元,分別寫出yi,y2關(guān)于x的函數(shù)關(guān)系式;

(2)當(dāng)35Vx<50時,選取哪種方式能節(jié)省上網(wǎng)費,請說明理由

27.(12分)如圖,要利用一面墻(墻長為25米)建羊圈,用100米的圍欄圍成總面積為400平方米的三個大小相同的

矩形羊圈,求羊圈的邊長AB,BC各為多少米?

RC

參考答案

一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)

1、C

【解析】

作OFLAB于F,OELAC于E,ODLBC于D,根據(jù)角平分線的性質(zhì)得到OD=OE=OF,根據(jù)三角形的面積公式計

算即可.

【詳解】

作OF_LAB于F,OE_LAC于E,OD_LBC于D,

B

CE力

1?三條角平分線交于點O,OF±AB,OE±AC,OD±BC,

/.OD=OE=OF,

*??SAABO:SABCO:SACAO=AB:BC:CA=20:30:40=2:3:4,

故選c.

【點睛】

考查的是角平分線的性質(zhì),掌握角的平分線上的點到角的兩邊的距離相等是解題的關(guān)鍵.

2、A

【解析】

由EB=CF,可得出EF=BC,又有NA=ND,本題具備了一組邊、一組角對應(yīng)相等,為了再添一個條件仍不能證明

△ABC^ADEF,那么添加的條件與原來的條件可形成SSA,就不能證明△ABC絲ZXDEF了.

【詳解】

;EB=CF,

.\EB+BF=CF+BF,即EF=BC,

又?../A=ND,

A、添加DE=AB與原條件滿足SSA,不能證明△ABC^^DEF,故A選項正確.

B、添力口DF〃AC,可得NDFE=NACB,根據(jù)AAS能證明△ABC絲△DEF,故B選項錯誤.

C、添加NE=NABC,根據(jù)AAS能證明△ABC^^DEF,故C選項錯誤.

D、添力口AB〃DE,可得NE=NABC,根據(jù)AAS能證明△ABCgz^DEF,故D選項錯誤,

故選A.

【點睛】

本題考查三角形全等的判定方法,判定兩個三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA>

SSA不能判定兩個三角形全等,判定兩個三角形全等時,必須有邊的參與,若有兩邊一角對應(yīng)相等時,角必須是兩邊

的夾角.

3,D

【解析】

過O作直線OE_LAB,交CD于F,由CD//AB可得AOABs/\ocD,根據(jù)相似三角形對應(yīng)邊的比等于對應(yīng)高的比列

方程求出CD的值即可.

【詳解】

過O作直線OE_LAB,交CD于F,

VAB//CD,

/.OF±CD,OE=12,OF=2,

/.△OAB^AOCD,

VOE.OF分別是△OAB和4OCD的高,

OFCD2CD

:.——=——,即nn一=——,

OEAB126

解得:CD=L

故選D.

【點睛】

本題考查相似三角形的應(yīng)用,解題的關(guān)鍵在于理解小孔成像原理給我們帶來的已知條件,熟記相似三角形對應(yīng)邊的比

等于對應(yīng)高的比是解題關(guān)鍵.

4、A

【解析】

由相反數(shù)的定義:“只有符號不同的兩個數(shù)互為相反數(shù)''可知-5的相反數(shù)是5.

故選A.

5、B

【解析】

根據(jù)圓周角定理求出/BOC,根據(jù)三角形內(nèi)角和定理計算即可.

【詳解】

解:由圓周角定理得,1BOC=2/A=80,

OB=OC,

.?.4CO=NCBO=50,

故選:B.

【點睛】

本題考查的是三角形的外接圓與外心,掌握圓周角定理、等腰三角形的性質(zhì)、三角形內(nèi)角和定理是解題的關(guān)鍵.

6^A

【解析】

根據(jù)三視圖的法則可得出答案.

【詳解】

解:左視圖為從左往右看得到的視圖,

A.球的左視圖是圓,

B.圓柱的左視圖是長方形,

C.圓錐的左視圖是等腰三角形,

D.圓臺的左視圖是等腰梯形,

故符合題意的選項是A.

【點睛】

錯因分析較容易題.失分原因是不會判斷常見幾何體的三視圖.

7、B

【解析】

A.括號前是負號去括號都變號;

B負次方就是該數(shù)次方后的倒數(shù),再根據(jù)前面兩個負號為正;

C.兩個負號為正;

D.三次根號和二次根號的算法.

【詳解】

A選項,-(x-y)=-x+y,故A錯誤;

B選項,-(-2)-1=-,故B正確;

2

C選項,———二一,故C錯誤;

yy

D選項,加一&=2-2拒=也,故D錯誤.

2

【點睛】

本題考查去括號法則的應(yīng)用,分式的性質(zhì),二次根式的算法,熟記知識點是解題的關(guān)鍵.

8、B

【解析】

通過圖象得到。、b、c符號和拋物線對稱軸,將方程℃2+法+C=4轉(zhuǎn)化為函數(shù)圖象交點問題,利用拋物線頂點證

明x(^ax+b^<a+b.

【詳解】

由圖象可知,拋物線開口向下,則。<0,c>0,

拋物線的頂點坐標(biāo)是4(1,4),

b

???拋物線對稱軸為直線x=--=l,

2a

b=-2a,

b>Q,則①錯誤,②正確;

方程依2+法+c=4的解,可以看做直線y=4與拋物線丁=以2+初1+。的交點的橫坐標(biāo),

由圖象可知,直線y=4經(jīng)過拋物線頂點,則直線y=4與拋物線有且只有一個交點,

則方程依2+法+°=4有兩個相等的實數(shù)根,③正確;

由拋物線對稱性,拋物線與x軸的另一個交點是(-1,0),則④錯誤;

不等式Wa+b可以化為ax2+bx+c<a+b+c>

拋物線頂點為(1,4),

二當(dāng)x=l時,>最大=a+6+c,

ax2+bx+c<a+b+c故⑤正確?

故選:B.

【點睛】

本題是二次函數(shù)綜合題,考查了二次函數(shù)的各項系數(shù)與圖象位置的關(guān)系、拋物線對稱性和最值,以及用函數(shù)的觀點解

決方程或不等式.

9、B

【解析】

根據(jù)事件發(fā)生的可能性大小判斷相應(yīng)事件的類型即可.

【詳解】

“車輛隨機到達一個路口,遇到紅燈”是隨機事件.

故選:B.

【點睛】

本題考查了隨機事件,解決本題需要正確理解必然事件、不可能事件、隨機事件的概念.必然事件指在一定條件下,一

定發(fā)生的實際;不可能事件是指在一定條件下,一定不發(fā)生的事件;不確定事件即隨機事件是指在一定條件下,可能

發(fā)生也可能不發(fā)生的事件.

10、B

【解析】

根據(jù)去括號法則,積的乘方的性質(zhì),完全平方公式,合并同類項法則,對各選項分析判斷后利用排除法求解.

【詳解】

解:A、因為-(a-1)=-a+L故本選項錯誤;

B、(-2a3)2=4a6,正確;

C、因為(a-b)2=a2-2ab+b2,故本選項錯誤;

D、因為a3與a?不是同類項,而且是加法,不能運算,故本選項錯誤.

故選B.

【點睛】

本題考查了合并同類項,積的乘方,完全平方公式,理清指數(shù)的變化是解題的關(guān)鍵.

11、D

【解析】

試題分析:連接OB,

.\BM=2,

.\OM=2x~,二二二二^二二二,

J9u9

故選D.

考點:1正多邊形和圓;2.弧長的計算.

12、B

【解析】

找到從左面看所得到的圖形即可,注意所有的看到的棱都應(yīng)表現(xiàn)在主視圖中.

【詳解】

解:從左面看易得下面一層有2個正方形,上面一層左邊有1個正方形.

故選:B.

【點睛】

本題考查了三視圖的知識,左視圖是從物體的左面看得到的視圖.

二、填空題:(本大題共6個小題,每小題4分,共24分.)

13、2或2.

【解析】

試題分析:分兩種情況討論:銳角三角形和鈍角三角形,根據(jù)勾股定理求得BD=16,CD=5,再由圖形求出BC,在銳

角三角形中,BC=BD+CD=2,在鈍角三角形中,BC=CD-BD=2.

故答案為2或2.

考點:勾股定理

14、x=l

【解析】

觀察可得方程最簡公分母為x(x-1),去分母,轉(zhuǎn)化為整式方程求解,結(jié)果要檢驗.

【詳解】

方程兩邊同乘X(X-1)得:

3x=l(x-1),

整理、解得x=L

檢驗:把x=l代入x(x-1)彳2.

,x=l是原方程的解,

故答案為x=l.

【點睛】

解分式方程的基本思想是把分式方程轉(zhuǎn)化為整式方程,具體方法是方程兩邊同時乘以最簡公分母,在此過程中有可能

會產(chǎn)生增根,增根是轉(zhuǎn)化后整式的根,不是原方程的根,因此要注意檢驗.

15、1

【解析】

..一2

試題分析:設(shè)點C的坐標(biāo)為(x,y),貝!|B(―2,y)D(x,-2),設(shè)BD的函數(shù)解析式為y=mx,則y=-2m,x=—一,

m

2

/.k=xy=(-2m)?(——)=1.

m

考點:求反比例函數(shù)解析式.

16、1或-1

【解析】

方程%(%+1)=%+1可化為:

(x+l)(x-1)=0,

:?%+1=0或%—1=0,

??X——1X=1?

故答案為1或4.

17、1

【解析】

解:原式=2義工-2+1=1—2+1=1.故答案為1.

2

1

18、一

2

【解析】

AC

利用勾股定理求出AB,再證明OC=OA=OD,推出NOCB=NODC,可得tan/OCB=tan/ODC=——,由此即可解

CD

決問題.

【詳解】

在RSABC中,VAC=4,BC=3,NACB=90。,

???AB=后+42=5,

???四邊形ABDE是菱形,

AAB=BD=5,OA=OD,

AOC=OA=OD,

.*.ZOCB=ZODC,

■//AC41

??tanNOCB=tanNODC=---=------——,

CD3+52

故答案為1.

【點睛】

本題考查菱形的性質(zhì)、勾股定理、直角三角形斜邊中線的性質(zhì)、銳角三角函數(shù)等知識,解題的關(guān)鍵是靈活運用所學(xué)知

識解決問題,學(xué)會用轉(zhuǎn)化的思想思考問題,屬于中考常考題型.

三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.

,、m—2,、

19、(1)--------;(2)-2<x<l

m+1

【解析】

(1)原式括號中兩項通分并利用同分母分式的減法法則計算,同時利用除法法則變形,約分即可得到結(jié)果;

(2)分別求出不等式組中兩不等式的解集,找出解集的公共部分即可.

【詳解】

(1)原式=一m+丁1(m+,2)(Jm-2)=-m—72;

m+2(m+1)m+1

x<l

(2)不等式組整理得:\,

x>-2

則不等式組的解集為-2Vx<L

【點睛】

此題考查計算能力,(D考查分式的化簡,正確將分子與分母分解因式及按照正確運算順序進行計算是解題的關(guān)鍵;

(2)是解不等式組,注意系數(shù)化為1時乘或除以的是負數(shù)時要變號.

20、解:(1)AF與圓O的相切.理由為:

如圖,連接OC,

;PC為圓O切線,ACPIOC.

/.ZOCP=900.

VOF/7BC,

.\ZAOF=ZB,ZCOF=ZOCB.

VOC=OB,/.ZOCB=ZB.AZAOF=ZCOF.

?.?在△AOF和△COF中,OA=OC,ZAOF=ZCOF,OF=OF,

/.△AOF^ACOF(SAS)..,.ZOAF=ZOCF=90°.

AF為圓O的切線,即AF與。O的位置關(guān)系是相切.

(2)?.,△AOF^ACOF,/.ZAOF=ZCOF.

VOA=OC,;.E為AC中點,BPAE=CE=-AC,OE±AC.

2

VOA±AF,.?.在RtAAOF中,OA=4,AF=3,根據(jù)勾股定理得:OF=1.

1124

VSAOF=-?OA?AF=-?OF?AE,:.AE=—.

A225

;.AC=2AE==.

【解析】

試題分析:(1)連接OC,先證出N3=N2,由SAS證明△OAF之△OCF,得對應(yīng)角相等NOAF=NOCF,再根據(jù)切線

的性質(zhì)得出NOCF=90。,證出NOAF=90。,即可得出結(jié)論;

(2)先由勾股定理求出OF,再由三角形的面積求出AE,根據(jù)垂徑定理得出AC=2AE.

試題解析:(1)連接OC,如圖所示:

;AB是。O直徑,

.,.ZBCA=90°,

,/OF/7BC,

...NAEO=90°,Z1=Z2,NB=N3,

.\OF±AC,

VOC=OA,

.\ZB=Z1,

:.Z3=Z2,

在/kOAF^AOCF中,

OA=OC

{Z3=Z2,

OF=OF

/.△OAF^AOCF(SAS),

:.ZOAF=ZOCF,

???PC是。。的切線,

/.ZOCF=90°,

.,.ZOAF=90°,

AFA1OA,

;.AF是。O的切線;

(2);。0的半徑為4,AF=3,ZOAF=90°,

;?OF=7OF2+6M2=A/32+42=1

VFA1OA,OF1AC,

;.AC=2AE,AOAF的面積=▲AF?OA」OF?AE,

22

.\3x4=lxAE,

“12

解得:AE=y,

24

.\AC=2AE=—.

5

考點:1.切線的判定與性質(zhì);2.勾股定理;3.相似三角形的判定與性質(zhì).

21、(1)弦AB長度的最大值為4,最小值為26;(2)面積最大值為(25006+2400)平方米,周長最大值為340

米.

【解析】

(1)當(dāng)AB是過P點的直徑時,AB最長;當(dāng)ABLOP時,AB最短,分別求出即可.(2)如圖在△ABC的一側(cè)以AC

為邊做等邊三角形AEC,再做4AEC的外接圓,則滿足NADC=60。的點D在優(yōu)弧AEC上(點D不與A、C重合),

當(dāng)D與E重合時,SAADC最大值=SAAEC,由SAABC為定值,故此時四邊形ABCD的面積最大,再根據(jù)勾股定理和等

邊三角形的性質(zhì)求出此時的面積與周長即可.

【詳解】

(1)(1)當(dāng)AB是過P點的直徑時,AB最長=2x2=4;

當(dāng)ABLOP時,AB最短,AP=7O42-(9P2=A/22-12=A/3

;.AB=2G

(2)如圖,在△ABC的一側(cè)以AC為邊做等邊三角形AEC,

再做△AEC的外接圓,

當(dāng)D與E重合時,SAADC最大

故此時四邊形ABCD的面積最大,

VZABC=90°,AB=80,BC=60

22

???AC=7AB+BC=100

二周長為AB+BC+CD+AE=80+60+100+100=340(米)

SAADC=-ACX/Z=IX100X50A/3=2500A/3

22

SAABC=—ABxBC=—x80x60=2400

22

二四邊形ABCD面積最大值為(2500G+2400)平方米.

【點睛】

此題主要考查圓的綜合利用,解題的關(guān)鍵是熟知圓的性質(zhì)定理與垂徑定理.

22、(l)y=-3.4x+141.1;(1)當(dāng)裝運核桃的汽車為2輛、裝運甘藍的汽車為12輛、裝運花椒的汽車為1輛時,總利潤

最大,最大利潤為117.4萬元.

【解析】

(1)根據(jù)題意可以得裝運甘藍的汽車為(lx+1)輛,裝運花椒的汽車為30-x-(lx+1)=(12-3x)輛,從而可以

得到y(tǒng)與x的函數(shù)關(guān)系式;

(1)根據(jù)裝花椒的汽車不超過8輛,可以求得x的取值范圍,從而可以得到y(tǒng)的最大值,從而可以得到總利潤最大時,

裝運各種產(chǎn)品的車輛數(shù).

【詳解】

⑴若裝運核桃的汽車為x輛,則裝運甘藍的汽車為(lx+1)輛,裝運花椒的汽車為30-x-(lx+1)=(12-3x)輛,

根據(jù)題意得:y=10x0.7x+4x0.5(lx+1)+6x0.8(12-3x)=-3.4x+141.1.

'29-3x<8

⑴根據(jù)題意得:</,

x+(2x+l)<30

29

解得:7<x<--,

3

:x為整數(shù),

.*.7<x<2.

V10.6X),

,y隨x增大而減小,

二當(dāng)x=7時,y取最大值,最大值=-3.4x7+141.1=117.4,此時:lx+l=12,12-3x=l.

答:當(dāng)裝運核桃的汽車為2輛、裝運甘藍的汽車為12輛、裝運花椒的汽車為1輛時,總利潤最大,最大利潤為117.4

萬元.

【點睛】

本題考查了一次函數(shù)的應(yīng)用,解題的關(guān)鍵是熟練的掌握一次函數(shù)的應(yīng)用.

23、(1)每臺A型100元,每臺B150元;(2)34臺A型和66臺B型;(3)70臺A型電腦和30臺B型電腦的銷售利潤

最大

【解析】

(1)設(shè)每臺A型電腦銷售利潤為。元,每臺3型電腦的銷售利潤為8元;根據(jù)題意列出方程組求解,

(2)①據(jù)題意得,尸-50X+15000,

②利用不等式求出x的范圍,又因為y=-50x+15000是減函數(shù),所以x取34,y取最大值,

(3)據(jù)題意得,y=(100+m)x-150(100-x),即y=Cm-50)x+15000,分三種情況討論,①當(dāng)0V/nV50時,y

隨x的增大而減小,②而=50時,m-50=0,y=15000,③當(dāng)50<小<100時,m-50>0,y隨x的增大而增大,分別

進行求解.

【詳解】

解:(1)設(shè)每臺A型電腦銷售利潤為a元,每臺B型電腦的銷售利潤為b元;根據(jù)題意得

fl0a+20b=4000

120a+10b=3500

a=100

解得

Z?=150

答:每臺A型電腦銷售利潤為100元,每臺B型電腦的銷售利潤為150元.

(2)①據(jù)題意得,y=100x+150(100-x),即y=-50x+15000,

②據(jù)題意得,100-x<2x,解得x>33—,

3

Vy=-50x+15000,-50<0,

;?y隨x的增大而減小,

為正整數(shù),

當(dāng)x=34時,y取最大值,貝!]100-x=66,

即商店購進34臺A型電腦和66臺B型電腦的銷售利潤最大.

(3)據(jù)題意得,y=(100+m)x+150(100-x),即y=(m-50)x+15000,

①當(dāng)0VmV50時,y隨x的增大而減小,

,當(dāng)x=34時,y取最大值,

即商店購進34臺A型電腦和66臺B型電腦的銷售利潤最大.

②m=50時,m-50=0,y=15000,

即商店購進A型電腦數(shù)量滿足33:SxW70的整數(shù)時,均獲得最大利潤;

③當(dāng)50VmV100時,m-50>0,y隨x的增大而增大,

.?.當(dāng)x=70時,y取得最大值.

即商店購進70臺A型電腦和30臺B型電腦的銷售利潤最大.

【點睛】

本題主要考查了一次函數(shù)的應(yīng)用,二元一次方程組及一元一次不等式的應(yīng)用,解題的關(guān)鍵是根據(jù)一次函數(shù)x值的增大

而確定y值的增減情況.

24、(l)m=4,C(0,4);(2)存在,M(2,6);⑶①尸(1+正,1+逐)或P(1-君』—君);②當(dāng)"2時,

S四邊形最大=16。

【解析】

(1)用待定系數(shù)法求出拋物線解析式;

(2)先判斷出面積最大時,平移直線BC的直線和拋物線只有一個交點,從而求出點M坐標(biāo);

(3)①先判斷出四邊形PBQC時菱形時,點P是線段BC的垂直平分線,利用該特殊性建立方程求解;

②先求出四邊形PBCQ的面積與t的函數(shù)關(guān)系式,從而確定出它的最大值.

【詳解】

解:(1)將B(4,0)ftAy--x2+3x+m,解得,m=4,

二次函數(shù)解析式為y=-必+3x+4,令x=0,得y=4,

AC(0,4);

(2)存在,理由:VB(4,0),C(0,4),

直線BC解析式為y=-x+4,當(dāng)直線BC向上平移b單位后和拋物線只有一個公共點時,△MBC面積最大,

.y--x+4+b

,,{2c.>

y=-A-+3x+4

-4(Z-2)2+16,

/.△=1-4b=0,;.b=4,

x=2

:.<,AM(2,6);

y=6

(3)①如圖,?.?點P在拋物線上,

...設(shè)P(m,-m2+37W+4),當(dāng)四邊形PBQC是菱形時,點P在線段BC的垂直平分線上,;B(4,0),C(0,4),

二線段BC的垂直平分線的解析式為y=x,

m=-m2+3m+4,

?*.m=l+y/5,

AP(1+75.1+石)或P(1—?,1—6);

裊.

②如圖,設(shè)點P(t,—產(chǎn)+3,+4),過點P作y軸的平行線1,過點C作1的垂線,

?.?點D在直線BC上,...D(t,-t+4),

22

VPD=-z+3t+4-(-t+4)=-t+4t,BE+CF=4,

119

工S四邊形PBQC=2SAPDC=2(SAPCD+SABD)=2(—PDxCF+—PDxBE)=4PD=-4-t+16%—4(%—2)+16

V0<t<4,

???當(dāng)t=2時,S四邊形PBQC最大=1.

考點:二次函數(shù)綜合題;二次函數(shù)的最值;最值問題;分類討論;壓軸題.

25、(1)證明見解析;(2)1.

【解析】

試題分析:(1)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論