版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
廣東省十校2024-2025學年高三下學期適應性訓練(四)數(shù)學試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.函數(shù)的大致圖象為A. B.C. D.2.函數(shù)在的圖象大致為()A. B.C. D.3.元代數(shù)學家朱世杰的數(shù)學名著《算術啟蒙》是中國古代代數(shù)學的通論,其中關于“松竹并生”的問題:松長五尺,竹長兩尺,松日自半,竹日自倍,松竹何日而長等.下圖是源于其思想的一個程序圖,若,,則輸出的()A.3 B.4 C.5 D.64.已知正三角形的邊長為2,為邊的中點,、分別為邊、上的動點,并滿足,則的取值范圍是()A. B. C. D.5.已知,,分別為內角,,的對邊,,,的面積為,則()A. B.4 C.5 D.6.已知函數(shù),則不等式的解集是()A. B. C. D.7.復數(shù)的共軛復數(shù)為()A. B. C. D.8.設為等差數(shù)列的前項和,若,,則的最小值為()A. B. C. D.9.已知四棱錐,底面ABCD是邊長為1的正方形,,平面平面ABCD,當點C到平面ABE的距離最大時,該四棱錐的體積為()A. B. C. D.110.五行學說是華夏民族創(chuàng)造的哲學思想,是華夏文明重要組成部分.古人認為,天下萬物皆由金、木、水、火、土五類元素組成,如圖,分別是金、木、水、火、土彼此之間存在的相生相克的關系.若從5類元素中任選2類元素,則2類元素相生的概率為()A. B. C. D.11.在中,,分別為,的中點,為上的任一點,實數(shù),滿足,設、、、的面積分別為、、、,記(),則取到最大值時,的值為()A.-1 B.1 C. D.12.已知函數(shù),存在實數(shù),使得,則的最大值為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知函數(shù)在上單調遞增,則實數(shù)a值范圍為_________.14.如圖,在矩形中,,是的中點,將,分別沿折起,使得平面平面,平面平面,則所得幾何體的外接球的體積為__________.15.設為定義在上的偶函數(shù),當時,(為常數(shù)),若,則實數(shù)的值為______.16.已知集合,則____________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù),若的解集為.(1)求的值;(2)若正實數(shù),,滿足,求證:.18.(12分)已知函數(shù)(,),且對任意,都有.(Ⅰ)用含的表達式表示;(Ⅱ)若存在兩個極值點,,且,求出的取值范圍,并證明;(Ⅲ)在(Ⅱ)的條件下,判斷零點的個數(shù),并說明理由.19.(12分)已知拋物線的焦點為,直線交于兩點(異于坐標原點O).(1)若直線過點,,求的方程;(2)當時,判斷直線是否過定點,若過定點,求出定點坐標;若不過定點,說明理由.20.(12分)設數(shù)列,其前項和,又單調遞增的等比數(shù)列,,.(Ⅰ)求數(shù)列,的通項公式;(Ⅱ)若,求數(shù)列的前n項和,并求證:.21.(12分)已知數(shù)列滿足.(1)求數(shù)列的通項公式;(2)設數(shù)列的前項和為,證明:.22.(10分)某市為了鼓勵市民節(jié)約用電,實行“階梯式”電價,將該市每戶居民的月用電量劃分為三檔,月用電量不超過度的部分按元/度收費,超過度但不超過度的部分按元/度收費,超過度的部分按元/度收費.(I)求某戶居民用電費用(單位:元)關于月用電量(單位:度)的函數(shù)解析式;(Ⅱ)為了了解居民的用電情況,通過抽樣,獲得了今年1月份戶居民每戶的用電量,統(tǒng)計分析后得到如圖所示的頻率分布直方圖,若這戶居民中,今年1月份用電費用不超過元的占,求,的值;(Ⅲ)在滿足(Ⅱ)的條件下,若以這戶居民用電量的頻率代替該月全市居民用戶用電量的概率,且同組中的數(shù)據(jù)用該組區(qū)間的中點代替,記為該居民用戶1月份的用電費用,求的分布列和數(shù)學期望.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.A【解析】
因為,所以函數(shù)是偶函數(shù),排除B、D,又,排除C,故選A.2.C【解析】
先根據(jù)函數(shù)奇偶性排除B,再根據(jù)函數(shù)極值排除A;結合特殊值即可排除D,即可得解.【詳解】函數(shù),則,所以為奇函數(shù),排除B選項;當時,,所以排除A選項;當時,,排除D選項;綜上可知,C為正確選項,故選:C.本題考查根據(jù)函數(shù)解析式判斷函數(shù)圖像,注意奇偶性、單調性、極值與特殊值的使用,屬于基礎題.3.B【解析】分析:根據(jù)流程圖中的可知,每次循環(huán)的值應是一個等比數(shù)列,公比為;根據(jù)流程圖中的可知,每次循環(huán)的值應是一個等比數(shù)列,公比為,根據(jù)每次循環(huán)得到的的值的大小決定循環(huán)的次數(shù)即可.詳解:記執(zhí)行第次循環(huán)時,的值記為有,則有;記執(zhí)行第次循環(huán)時,的值記為有,則有.令,則有,故,故選B.點睛:本題為算法中的循環(huán)結構和數(shù)列通項的綜合,屬于中檔題,解題時注意流程圖中蘊含的數(shù)列關系(比如相鄰項滿足等比數(shù)列、等差數(shù)列的定義,是否是求數(shù)列的前和、前項積等).4.A【解析】
建立平面直角坐標系,求出直線,設出點,通過,找出與的關系.通過數(shù)量積的坐標表示,將表示成與的關系式,消元,轉化成或的二次函數(shù),利用二次函數(shù)的相關知識,求出其值域,即為的取值范圍.【詳解】以D為原點,BC所在直線為軸,AD所在直線為軸建系,設,則直線,設點,所以由得,即,所以,由及,解得,由二次函數(shù)的圖像知,,所以的取值范圍是.故選A.本題主要考查解析法在向量中的應用,以及轉化與化歸思想的運用.5.D【解析】
由正弦定理可知,從而可求出.通過可求出,結合余弦定理即可求出的值.【詳解】解:,即,即.,則.,解得.,故選:D.本題考查了正弦定理,考查了余弦定理,考查了三角形的面積公式,考查同角三角函數(shù)的基本關系.本題的關鍵是通過正弦定理結合已知條件,得到角的正弦值余弦值.6.B【解析】
由導數(shù)確定函數(shù)的單調性,利用函數(shù)單調性解不等式即可.【詳解】函數(shù),可得,時,,單調遞增,∵,故不等式的解集等價于不等式的解集..∴.故選:B.本題主要考查了利用導數(shù)判定函數(shù)的單調性,根據(jù)單調性解不等式,屬于中檔題.7.D【解析】
直接相乘,得,由共軛復數(shù)的性質即可得結果【詳解】∵∴其共軛復數(shù)為.故選:D熟悉復數(shù)的四則運算以及共軛復數(shù)的性質.8.C【解析】
根據(jù)已知條件求得等差數(shù)列的通項公式,判斷出最小時的值,由此求得的最小值.【詳解】依題意,解得,所以.由解得,所以前項和中,前項的和最小,且.故選:C本小題主要考查等差數(shù)列通項公式和前項和公式的基本量計算,考查等差數(shù)列前項和最值的求法,屬于基礎題.9.B【解析】
過點E作,垂足為H,過H作,垂足為F,連接EF.因為平面ABE,所以點C到平面ABE的距離等于點H到平面ABE的距離.設,將表示成關于的函數(shù),再求函數(shù)的最值,即可得答案.【詳解】過點E作,垂足為H,過H作,垂足為F,連接EF.因為平面平面ABCD,所以平面ABCD,所以.因為底面ABCD是邊長為1的正方形,,所以.因為平面ABE,所以點C到平面ABE的距離等于點H到平面ABE的距離.易證平面平面ABE,所以點H到平面ABE的距離,即為H到EF的距離.不妨設,則,.因為,所以,所以,當時,等號成立.此時EH與ED重合,所以,.故選:B.本題考查空間中點到面的距離的最值,考查函數(shù)與方程思想、轉化與化歸思想,考查空間想象能力和運算求解能力,求解時注意輔助線及面面垂直的應用.10.A【解析】
列舉出金、木、水、火、土任取兩個的所有結果共10種,其中2類元素相生的結果有5種,再根據(jù)古典概型概率公式可得結果.【詳解】金、木、水、火、土任取兩類,共有:金木、金水、金火、金土、木水、木火、木土、水火、水土、火土10種結果,其中兩類元素相生的有火木、火土、木水、水金、金土共5結果,所以2類元素相生的概率為,故選A.本題主要考查古典概型概率公式的應用,屬于基礎題,利用古典概型概率公式求概率時,找準基本事件個數(shù)是解題的關鍵,基本亊件的探求方法有(1)枚舉法:適合給定的基本事件個數(shù)較少且易一一列舉出的;(2)樹狀圖法:適合于較為復雜的問題中的基本亊件的探求.在找基本事件個數(shù)時,一定要按順序逐個寫出:先,….,再,…..依次….…這樣才能避免多寫、漏寫現(xiàn)象的發(fā)生.11.D【解析】
根據(jù)三角形中位線的性質,可得到的距離等于△的邊上高的一半,從而得到,由此結合基本不等式求最值,得到當取到最大值時,為的中點,再由平行四邊形法則得出,根據(jù)平面向量基本定理可求得,從而可求得結果.【詳解】如圖所示:因為是△的中位線,所以到的距離等于△的邊上高的一半,所以,由此可得,當且僅當時,即為的中點時,等號成立,所以,由平行四邊形法則可得,,將以上兩式相加可得,所以,又已知,根據(jù)平面向量基本定理可得,從而.故選:D本題考查了向量加法的平行四邊形法則,考查了平面向量基本定理的應用,考查了基本不等式求最值,屬于中檔題.12.A【解析】
畫出分段函數(shù)圖像,可得,由于,構造函數(shù),利用導數(shù)研究單調性,分析最值,即得解.【詳解】由于,,由于,令,,在↗,↘故.故選:A本題考查了導數(shù)在函數(shù)性質探究中的應用,考查了學生數(shù)形結合,轉化劃歸,綜合分析,數(shù)學運算的能力,屬于較難題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】
由在上恒成立可求解.【詳解】,令,∵,∴,又,,從而,令,問題等價于在時恒成立,∴,解得.故答案為:.本題考查函數(shù)的單調性,解題關鍵是問題轉化為恒成立,利用換元法和二次函數(shù)的性質易求解.14.【解析】
根據(jù)題意,畫出空間幾何體,設的中點分別為,并連接,利用面面垂直的性質及所給線段關系,可知幾何體的外接球的球心為,即可求得其外接球的體積.【詳解】由題可得,,均為等腰直角三角形,如圖所示,設的中點分別為,連接,則,.因為平面平面,平面平面,所以平面,平面,易得,則幾何體的外接球的球心為,半徑,所以幾何體的外接球的體積為.故答案為:.本題考查了空間幾何體的綜合應用,折疊后空間幾何體的線面位置關系應用,空間幾何體外接球的性質及體積求法,屬于中檔題.15.1【解析】
根據(jù)為定義在上的偶函數(shù),得,再根據(jù)當時,(為常數(shù))求解.【詳解】因為為定義在上的偶函數(shù),所以,又因為當時,,所以,所以實數(shù)的值為1.故答案為:1本題主要考查函數(shù)奇偶性的應用,還考查了運算求解的能力,屬于基礎題.16.【解析】
根據(jù)并集的定義計算即可.【詳解】由集合的并集,知.故答案為:本題考查集合的并集運算,屬于容易題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1);(2)證明見詳解.【解析】
(1)將不等式的解集用表示出來,結合題中的解集,求出的值;(2)利用柯西不等式證明.【詳解】解:(1),,,因為的解集為,所以,;(2)由(1)由柯西不等式,當且僅當,,,等號成立.本題考查了絕對值不等式的解法,利用柯西不等式證明不等式的問題,屬于中檔題.18.(1)(2)見解析(3)見解析【解析】試題分析:利用賦值法求出關系,求函數(shù)導數(shù),要求函數(shù)有兩個極值點,只需在內有兩個實根,利用一元二次方程的根的分布求出的取值范圍,再根據(jù)函數(shù)圖象和極值的大小判斷零點的個數(shù).試題解析:(Ⅰ)根據(jù)題意:令,可得,所以,經驗證,可得當時,對任意,都有,所以.(Ⅱ)由(Ⅰ)可知,且,所以,令,要使存在兩個極值點,,則須有有兩個不相等的正數(shù)根,所以或解得或無解,所以的取值范圍,可得,由題意知,令,則.而當時,,即,所以在上單調遞減,所以即時,.(Ⅲ)因為,.令得,.由(Ⅱ)知時,的對稱軸,,,所以.又,可得,此時,在上單調遞減,上單調遞增,上單調遞減,所以最多只有三個不同的零點.又因為,所以在上遞增,即時,恒成立.根據(jù)(2)可知且,所以,即,所以,使得.由,得,又,,所以恰有三個不同的零點:,1,.綜上所述,恰有三個不同的零點.【點睛】利用賦值法求出關系,利用函數(shù)導數(shù),研究函數(shù)的單調性,要求函數(shù)有兩個極值點,只需在內有兩個實根,利用一元二次方程的根的分布求出的取值范圍,利用函數(shù)的導數(shù)研究函數(shù)的單調性、極值,再根據(jù)函數(shù)圖象和極值的大小判斷零點的個數(shù)是近年高考壓軸題的熱點.19.(1)(2)直線過定點【解析】
設.(1)由題意知,.設直線的方程為,由得,則,由根與系數(shù)的關系可得,所以.由,得,解得.所以拋物線的方程為.(2)設直線的方程為,由得,由根與系數(shù)的關系可得,所以,解得.所以直線的方程為,所以時,直線過定點.20.(1),;(2)詳見解析.【解析】
(1)當時,,當時,,當時,也滿足,∴,∵等比數(shù)列,∴,∴,又∵,∴或(舍去),∴;(2)由(1)可得:,∴,顯然數(shù)列是遞增數(shù)列,∴,即.)21.(1);(2)見解析.【解析】
(1)令,,利用可求得數(shù)列的通項公式,由此可得出數(shù)列的通項公式;(2)求得,利用裂項相消法求得,進而可得出結論.【詳解】(1)令,,當時,;當時,,則,故;(2),.本題考查利用求通項,同時也考查了裂項相消法求和,考查計算能力與推理能力,屬于基礎題.22.(1);(2),;(3)見解析.【解析】試題分析:(1)根據(jù)題意分段表示出函數(shù)解析
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2026年醫(yī)療器械研發(fā)工程師中級模擬考試卷
- 2026年電工技術初級實操技能測試題
- 民營企業(yè)解散清算專項法律服務工作方案
- 公司強制解散清算專項法律服務方案
- 十進制基礎題目及答案
- 2022年護士執(zhí)業(yè)資格考試綜合試題及答案卷42
- 第4章習題及答案-無機材料科學基礎
- 醫(yī)院感染預防與控制試題及答案
- 2025年中西醫(yī)結合執(zhí)業(yè)醫(yī)師全科綜合能力考試題庫(附含答案)
- 奧倫自理理論題庫及答案
- 年產30萬噸木薯燃料乙醇項目一期工程(年產15萬噸)可行性研究報告
- 2024年水合肼行業(yè)發(fā)展現(xiàn)狀分析:水合肼市場需求量約為11.47萬噸
- 肺炎性假瘤誤診為肺癌的HRCT表現(xiàn)及淺析
- (正式版)JBT 14933-2024 機械式停車設備 檢驗與試驗規(guī)范
- 幼兒園勞動教育計劃及實施
- 新人教版五年級小學數(shù)學全冊奧數(shù)(含答案)
- 志愿服務證明(多模板)
- 術后腸麻痹學習課件
- 頂管施工方案非開挖電纜管道專項施工方案
- XX小學傳統(tǒng)體育游戲集錦
- GB/T 33091-2016聚氨酯篩板
評論
0/150
提交評論