版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
No.2024-10
UsingDensityForecastfor
Growth-at-RisktoImproveMeanForecastofGDPGrowthinKorea
YoosoonChang,Yong-gunKim,BoreumKwak,JoonY.Park
2024.9
ChangyongRhee
04531,Korea
JaeWonLee
(DirectorGeneraloftheInstitute)
2024
BOKWPNo.2024-10
UsingDensityForecastforGrowth-at-
RisktoImproveMeanForecastof
GDPGrowthinKorea
YoosoonChang*,Yong-gunKim**,BoreumKwak***,JoonY.Park?
September,2024
Theviewsexpressedhereinarethoseoftheauthors,anddonotnecessarilyreflecttheofficialviewsoftheBankofKorea.Whenreportingorcitingthispaper,theauthors’namesshouldalwaysbeexplicitlystated.
?DepartmentofEconomics,IndianaUniversity,Email:yoosoon@.??BankofKorea,Email:ygkim@bok.or.kr.
???BankofKorea,Email:br.kwak@bok.or.kr.
?DepartmentofEconomics,IndianaUniversity,Email:joon@.
TheresearchreportedinthispaperwassuggestedbyChangyongRhee,thegovernoroftheBankofKorea.WearegratefultoDomenicoGiannone,MichaelMcCracken,TatevikSekh-posyan,NamKangLee,RaffaellaGiacomini,andtoTaeyoungDohfortheirhelpfulcommentsanddiscussions.WealsothankDowanKimandJihyunKimfortheircarefulandconstructivereviewsandtheparticipantsoftheBOKseminarfortheirfeedback.ThisresearchisfinanciallysupportedbytheBankofKorea.
Contents
I.Introduction 1
II.ForecastsofKoreanGDPGrowth 5
III.TheModelandEconometricMethodology 12
IV.EmpiricalResults 18
V.Conclusion 41
A.ConstructingRealGDPGapandFinancialCondition
Index 45
B.RestrictedModelswithSingleandDoubleFactors 49
C.AdditionalResultsforRestrictedModelwithMean
Factor 53
UsingDensityForecastforGrowth-at-Riskto
ImproveMeanForecastofGDPGrowthinKorea
Inthispaper,westudyhowwemayusedensityforecaststoimprovepointfore-castsfortheKoreanGDPgrowthratesduringtheperiodfrom2013:Q3to2022:Q1.
Althoughthetimespanunderinvestigationismuchshorterthandesired,ourcon-clusionsareclear.Densityforecastsimprovepointforecasts,aslongastheyareeffectivelyapproximatedandrepresentedasfinitedimensionalvectorsbyappro-priatelychosenfunctionalbases.However,theymayonlybeusedtoadjustpointforecasts.Combiningthemwithpointforecaststodefineweightedmeanforecastsdoesnotyieldanymeaningfulimprovement.Thefunctionalbasesweuseforourbaselineapproacharetheleadingfunctionalprincipalcomponents,whichbycon-structionmostefficientlyextractthevariationsindensityforecastsovertime.Todisentangletheeffectsofthemeanandotheraspectsofdensityforecasts,however,wealsousethefunctionalbasis,whichdesignates,astheleadingfactor,themeanfactorthatcapturesthetemporalchangesinthemeanofdensityforecasts.Especiallywiththeuseofthisfunctionalbasis,weseeadrasticincreaseintheprecisionofpointforecastsfortheKoreanGDPgrowthrates.Infact,themeansquarederrorofpointforecastsdecreasesbymorethan33%,iftheyareadjustedbydensityforecastswithourfunctionalbasisincludingthemeanfactor.
Keywords:GDPgrowthrate,pointforecast,growth-at-riskdensityforecast,func-tionalregression,functionalbasis,functionalprincipalcomponentanalysis
JELClassification:C53,E17,E37
1
BOKWorkingPaperNo.2024-10
I.Introduction
TheBankofEnglandintroduceditsfamousfanchartsin1996tohelppolicy-makersandthepublicbetterunderstandtherisksanduncertaintiessurroundingtheircentralinflationprojections.Sincethen,centralbanksandmajorresearchinstitutionsworldwidehavebeenprovidingmoreinformationregardingtheun-certaintiesaroundtheirmeanorpointforecastsofkeyeconomicindicators,no-tablyforGDPgrowthandinflation.Thistrendhasledtothepublicationofdensityforecastsbyvariousinstitutionsincluding,amongothers,theBankofCanada,theNorgesBank,theFederalReserveBoardofGovernors,theNYFED,andtheIMF,eachofferingitsownestimatesfortheprobabilitydistribu-tionusingvariouseconometricapproaches,inadditiontotheconventionalpointforecasts,ofthesevariables.TheBankofKorea(BOK)isinternallyexaminingdensityforecastsaswellasannouncingpointforecastsfortheGDPgrowthinKoreatoprovidetheirassessmentsofthegrowth-at-risk(GaR),i.e.,therisksanduncertaintiesassociatedwiththefutureeconomicgrowth,inKorea.
ThetwoforecastsforGDPgrowthrates,pointforecasts,anddensityfore-castsaretypicallypreparedbydistinctiveworkinggroupsfordifferentpurposesrelyingonnotentirelyoverlappingsetsofinformation.However,pointforecastsareconsideredbymostpeopleasmeanforecasts,i.e.,forecastsofthemeanofGDPgrowthrates,1)whicharealsoprovidedbydensityforecastsasoneoftheircharacteristics.Publishingdensityforecastsaswellaspointforecaststhereforenecessarilycreatesaproblemofdiscordance,sincethemeanofadensityforecastwouldnotagreewiththecorrespondingpointforecastunlesstheyarealignedwitheachotherbeforetheirpublication.Therefore,raisedarethreeimportantissuesregardingthejointpublicationofpointanddensityforecasts:(i)whetherdensityforecastsprovideanyusefulinformationforpointforecasts,(ii)howtocombinetheadditionalinformationindensityforecastswiththatinpointfore-
1)PointforecastsmayalsobeinterpretedastheforecastsforotherdistributionalcharacteristicsofGDPgrowthratessuchasmedian,modeorevenaparticularquantilebyspecificallylookingatanappropriatelossfunctionfortheforecastingerror.Inthepaper,weusethemeansquaredlossfunctionfortheforecastingerrorassumingthatpointforecastsareregardedastheforecastsforthemeanofGDPgrowthrates.
UsingDensityForecasttoImproveMeanForecastofGDPGrowthinKorea
2
casts,andfinally(iii)howtoalignthemeanofadensityforecastwiththecor-respondingpointforecast.
Inthispaper,weaddressandfindasolutiontoeachoftheseissuesfortheforecastsofGDPgrowthratesinKorea.Aspointforecasts,weusetheBOKo?icialone-year-aheadforecastsduringtheperiodfrom2013:Q3to2022:Q1.Overthesameperiod,densityforecastsareobtainedbasedonacopulabasedapproachasproposedinLee(2020).2)Weconstructakeyvariable,theFinancialConditionIndex(FCI),usingvariouseconomicvariablesthatarebelievedtoreflectmacroandfinancialmarketconditionsinKorea.Ascovariates,weincludetherealGDPgap,theU.S.federalfundsrate(FFR),thespreadbetweentheU.S.FFRandtheKoreancallrate,aswellastheFCI.3)Foreachtimeperiod,wefollowAdrianetal.(2019)andcomputefourconditionalquantilevalues,atthelevels5%,25%,75%,and95%ofGDPgrowthratesconditionalonthesetofourcovariates,anddefineaskewedt-densitywithfourparametersthatmostcloselymatchesthecomputedconditionalquantilevaluesasourdensityforecast.
OurstudyemploysafunctionalregressionofthefutureGDPgrowthrateonitsdensityforecastasanadditionalfunctionalcovariate,aswellasitspointforecastasausualscalarcovariate.Thoughsimple,thisfunctionalregressionisexpectedtoprovidedirectanswerstoourquestions.Ifthedensityforecastisasinformativeasthepointforecast,thenitwouldcertainlyimprovetheprecisionofthepredictionifwecombinethedensityforecastwiththepointforecasttocomeupwithanewpredictor.Ourfunctionalregressioncanbeveryusefulinthiscontext,sincewemayjustrunthefunctionalregressionandeasilydefineanewpredictorasalinearcombinationofthetwocovariates:thepointforecastandthedensityforecast.Evenifthedensityforecastisnotasinformativeasthepointforecast,wemaystillusethedensityforecasttoadjustthepointforecastandimprovetheprecisionoftheforecast.Inthiscase,wemaysimplyconsiderthefunctionalregressionofthepredictionerrormadebythepointforecastonthedensityforecastasafunctionalcovariate.
2)LeewasinchargeofproducingdensityforecastsforinternaluseattheBOK,andwasworkingattheBOKatthetimethisprojectwasstartedin2022.
3)Adrianetal.(2019)useasconditioningvariablesGDPgrowthrateandFCI.
3
BOKWorkingPaperNo.2024-10
Toestimatethefunctionalregressionrequiredforourstudy,weneedtocon-vertthedensityforecastintoafinitedimensionalvector.Forthis,weapproximatethedensityforecastasafinitelinearcombinationofanappropriatelychosenfunctionalbasis,whichisrepresentedasafinitedimensionalvectorofthecoe?i-cientsappearinginthelinearcombinationofthebasisusedtoapproximatethedensityforecast.Thetransformationtomaptheapproximatedensityforecasttoafinitedimensionalvectorisone-to-oneandpreservesthedistance.Therefore,onceweapproximateandrepresentthedensityforecastasafinitedimensionalvectorusingafunctionalbasis,ourfunctionalregressionessentiallyreducestothestandardregressionthatmaybeestimatedbytheusualOLSprocedure.Anestimateforthefunctionalcoe?icientforthedensityforecastcanbeeasilyob-tainedbymappingtheOLSestimatorobtainedfromthecorrespondingstandardregressionsbacktoafunctionalestimatebyapplyingtheinversetransformation.
Forthebaselinefunctionalregressions,weusetheleadingfunctionalprin-cipalcomponents(FPCs)ofobserveddensityforecastsasourfunctionalbasis.Byconstruction,theleadingFPCsmoste?icientlyextractthevariationinanyfunctionalobservationsand,forthisreason,itismostwidelyusedasafunc-tionalbasisinawiderangeofapplicationsinfunctionaldataanalysis.Indeed,Changetal.(2022)showthatusingtheleadingFPCsasafunctionalbasistoapproximateandrepresentfunctionalobservationsasfinitedimensionalvectorsentailssomeoptimalpropertiesinestimatinggeneralfunctionalregressions.Inthepaper,however,wealsoemployanotherfunctionalbasistodisentangletheeffectofthemeanofthedensityforecast,fromtheeffectsofanyotheraspectsofthedensityforecast,onthepredictionofactualgrowthrates.Forthispurpose,weusethefunctionalbasisconsistingofthefirstelementdesignatedasthemeanfactor,whichcapturesthetemporalchangesinthemeanofthedensityforecast,andotherelementsgivenbytheleadingFPCsofthecentereddensityforecasts,i.e.,thedensityforecastswiththeirmeansshiftedtozero.
Themostseriouslimitationofourstudyisthatthereareonly35quarterlyobservationsavailablefortheo?icialBOKpointforecasts.Wearefullyawareofthefactthatoursamplesizeismuchsmallerthandesiredandthatthecon-sequenceofthislimitedavailabilityofdatacanbeseverelydetrimentaltoour
UsingDensityForecasttoImproveMeanForecastofGDPGrowthinKorea
4
study.Thismakesithardforustorelyonthesophisticatedfunctionaldataanalysisthatweneedtoadopttoinvestigateourproblemsinfullgenerality.4)Fortunately,however,weareabletodrawasetofclearandcoherentconclusionsonallofourthreemainquestions:whethertheuseofdensityforecastsishelp-fulatallforimprovingpointforecasts,howtousetheinformationondensityforecaststoprovidebetterpointforecasts,andhowtomakethemeanofden-sityforecastsaccordwithpointforecasts.Ourresultsareconsistentandrobustacrossdifferentchoicesoffunctionalbasesandvariousothertuningparameters,andtheyseemtobequitereliable.
Theuseofdensityforecasts,inadditiontopointforecasts,appearstogener-allyimprovetheprecisionoftheforecastforfutureKoreanGDPgrowthrates.Ifdensityforecastsarecombinedwithpointforecastsbasedonourfunctionalregressiontodefineweightedmeanforecasts,however,theforecastprecisiondoesnotimprovesignificantly.Foramoremeaningfulimprovement,densityforecastsshouldbeusedonlytoadjustpointforecasts.TheseareconclusionsthatwedrawfromourfunctionalregressionestimatedwiththefunctionalbasisconsistingoftheleadingFPCsofobserveddensityforecasts.Todisentangletheeffectsofthemeanandotherdistributionalaspectsofdensityforecasts,wealsouseanotherfunctionalbasisincludingthemeanfactor,whichcapturesthetemporalchangesinthemeanofdensityforecasts,andtwootherfactorsextractedastheFPCsofthecentereddensityforecasts.Withtheuseofthisfunctionalbasis,weseeamostdrasticincreaseintheprecisionoftheforecastforfutureGDPgrowthrates.Infact,themeansquarederrorofpointforecastsdecreasesbymorethan33%,iftheyareadjustedbydensityforecastswiththefunctionalbasisincludingthemeanfactor.
ThedetailsofourempiricalresultshavefurtherimplicationsonhowbestdensityforecastscanbeusedtoadjustpointforecaststoimprovetheprecisionofthepointpredictionofthefutureKoreanGDPgrowthrates.First,ourresultsshowthathistoricallythepointforecastsforKoreangrowthratestendtobelow
4)Duetothelimitedavailabilityofdata,wedidn’tperformanyformalback-testing.Wedrewourconclusionsmostlybasedonthebiasandvariancecomputedsimplyfromtheforecastingregressionmodel.
5
BOKWorkingPaperNo.2024-10
whenpessimisticfuturescenariosareprevailingwithpotentiallyhighdownsiderisks.Althoughthetendencytooverreactalsoexistswhenfuturesarehighlyoptimistic,itisnotassignificantasinthepessimisticcase.Second,accordingtoourresults,themeanofadensityforecastisimportantandshouldbeexploitedtoproduceamoreprecisepointforecast.Asaconsequence,itisnotrecommendedtoshiftthedensityforecasttomakeitsmeanalignedwiththatofthepointforecast.Thelossofinformationincurredbysuchapracticecanbesubstantial.Finally,wemayalsouseourresultstodealwiththediscrepancybetweenapointforecastandthemeanofadensityforecast.Thebestwaytodealwiththisproblemisfirsttoadjustthepointforecastusingourfunctionalregressionwiththedensityforecast,andthenrefitthedensityforecastwithitsmeanalignedwiththeadjustedpointforecast.
Therestofthepaperisorganizedasfollows.SectionIIdescribeshowweconstructdensityforecastsofGDPgrowthrates.SectionIIIprovidesabriefin-troductiontothefunctionalregressionweusetopredictgrowthrateusingdensityforecastsalongwiththeBOK’so?icialpointforecasts.SectionIVpresentsourempiricalresults.Itprovidesestimatesoftheweightsonpointforecasts,anddensityforecastsusedtoconstructanewpredictor,computestheadjustmentfactorfromdensityforecaststoimprovethepointforecast,andinvestigateshowthedensityforecastsimprovethepointforecast,especiallyinwhichwaythemeanfactorofthedensityforecastscontributestoimprovingthepointforecast.SectionIValsoprovidesdiscussionsonourfindingsandtheirimplications.Sec-tionVconcludes,andtheAppendixprovidesdetailsoftheanalysesprovidedinthemaintextandsomerobustnesschecks.
II.ForecastsofKoreanGDPGrowth
1.PointForecastofGDPGrowth
ThepointforecastsanalyzedinourstudyaretheforecastsofKoreanGDPgrowthratesconstructedbytheBankofKorea(BOK).TheBOKproducesGDPforecastsforthecurrentyearandthenextyeareveryquarterandreleasestheir
UsingDensityForecasttoImproveMeanForecastofGDPGrowthinKorea
6
forecastsfourtimesperyearinFebruary,May,August,andNovember.5)TheBOK’so?icialpointforecastsarefixed-eventforecaststhatareproducedeachquarterforthesametargetvariables,theGDPgrowthratesforthecurrentcal-endaryearandthenextcalendaryear,withdecreasingforecasthorizonsastimeprogressestowardtheendoftherespectivecalendaryear.Underthisfixed-eventforecastingscheme,forexample,theBOK’spointforecastsmadeinMay2022andAugust2022bothprovideaforecastforthesametargetvariable,i.e.,thecurrentcalendaryear2022,butwithashorterforecasthorizonfortheforecastmadelaterinAugust2022.Thefixed-eventforecaststhereforereflectdecreasinguncertaintiesineconomicconditionsastheforecasthorizonshortens,and,conse-quently,theresultingforecasterrorvariancesshowsuchseasonalcharacteristics.
Forourstudy,however,weuseanalternateforecastingschemethatpro-ducesfixed-horizonforecasts.Thefixed-horizonpointforecastsaremoresuit-ableforourempiricalanalysesfortworeasons.First,unliketheBOK’so?icialfixed-eventpointforecasts,fixed-horizonforecastsarelesssusceptibletoseasonalcharacteristicsofforecasterrorvariances.Second,withfixed-horizonforecasts,itisstraightforwardtomatchtheforecasthorizonwiththatofdensityfore-caststhatarecommonlyusedbypolicymakerstocharacterizetheuncertaintyoffuturegrowthratesaftersomefixedamountoftime.Detailsonhowwecon-structdensityforecastsfortheKoreangrowthratesareprovidedinthefollowingsubsection.
Morespecifically,weanalyzepointforecastsforone-year-aheadGDPgrowthrates.Inthisscheme,theforecasthorizonisfixedatfourquarters,whilethefore-casttargetvariablevariestorepresentthefuturegrowthratefourquartersaftertheforecastismade.Incontrasttothefixed-eventpointforecastsillustratedabove,thefixed-horizonone-year-aheadpointforecastsmadeinMay2022andAugust2022provideforecastsfortwodistincttargetvariables,thegrowthratein2023Q1andthegrowthratein2023Q2,respectively,withthesamefore-casthorizonatfourquarters,andconsequentlywithnoaforementionedseasonal
5)InNovember,theforecastsforthecurrentyearandthefollowingtwoyearsaremade.TheBOK’scurrentreportingschedulewasadoptedin2020.Priorto2020,theBOKreleaseditsforecastsinJanuary,April,July,andOctober.
7
BOKWorkingPaperNo.2024-10
patternsinforecasterrorvariances.
ToobtaintheBOK’sone-year-aheadpointforecast,wecollectthevintagequarterlypointforecastpathsconstructedbytheBOK.6)Vintagepointforecastpathsforthefirst,second,third,andfourthquartersofeachyearincludepointforecastsofGDPgrowthratesuptoseven-,six-,five-,andeight-quarters-ahead,respectively,fromthequarterswhentheo?icialforecastsweremade.Eachvin-tagepointforecastpathwasconstructedusingthesameforecastingprocedureusedtoproducetheBOK’so?icialpointforecastpublishedeachquarterinoursampleperiod.Sincethesepointforecastpathswereconstructedwiththesamedataset,thesameforecastingmodel,andthesameexpertjudgmentsasthoseusedtoproducetheo?icialpointforecasts,weassumethepointforecastsusedinourstudyaso?icialBOKone-year-aheadpointforecasts.
Forourstudy,weconstructaquarterlytimeseriesofone-year-aheadpointforecastsusing,foreachquarter,thefour-quarter-aheadforecastfromthevintagepointforecastpathfortheperiod2013:Q3to2022:Q1.Oursampleperiodisdeterminedbythedataavailability.Itstartsfrom2013:Q3sincethevintageBOK’spointforecastpathsforGDPgrowthratesareavailableonlyfromthen,anditendsin2022:Q1sinceweneedactualone-year-aheadGDPgrowthratesastheforecasttargetvariableforouranalysis.7)Oursamplesizeisrathershortwithonly35quarterlyobservations,butthisisthelongestwecanstretchifwewanttouseonlyvintagedata.Wemay,ofcourse,extendthesampleperiodifweusemodel-basedpointforecastsconstructedex-postfortheearlieryears.
2.DensityForecastofGDPGrowth
Therearemanydifferentwaystoconstructdensityforecasts.Oneofthemostcommonlyusedapproaches,duelargelytoitssimplicity,istofollowAdrianetal.
6)Quarterlypointforecastpathsareconfidentialdataandconstructedforinternalanalysisandjudgmentsonly.
7)Toconstructthetargetannualgrowthrateateachquarter,sayat2020:Q4,weneedfourquarterlyGDPleveldatafor2020:Q4,2020:Q3,2020:Q2,and2020:Q1,alongwithfouryear-over-yearGDPchanges,2021:Q4-2020:Q4,2021:Q3-2020:Q3,2021:Q2-2020:Q2,and2021:Q1-2020:Q1.
UsingDensityForecasttoImproveMeanForecastofGDPGrowthinKorea
8
(2019)andobtaindensityforecastsfromthelinearquantileregressionoffutureGDPgrowthratesonthecurrentfinancialconditionindex(FCI),aswellasGDPgrowthrate,andfitaskewedt-densitywithfourparametersthatmostcloselymatchesthecomputedquantilevalues.Asanalternative,Carrieroetal.(2020)proposemodel-implieddensityforecastsconstructedfromaBayesianVARmodel.Linearityofthequantileregressionandnormalityoftheerrordistributionhavebeenchallenged,andtherearemoreflexiblemodelsandmethodsallowingfornonlinearityandnonparametricerrordistributions.Theyincludeanonpara-metricestimationofnonlinearVARbyAdrianetal.(2021),aMarkovswitchingmodelbyCaldaraetal.(2021),useofGARCH-typevolatilitybyBrownleesandSouza(2021),andasemi-parametricestimationusingsurveyforecastsbyClarketal.(2020).
FollowingLee(2020),weestimateconditionalquantilesoffutureGDPgrowthbyutilizingaD-vinecopulabasedquantileregressionmethodasintroducedbyKrausandCzado(2017).Givencovariates(Xt),Xt=(X1t,...,XMt),thefunc-
tionQYt+h∣X(τ∣x)representingtheτ-thconditionalquantilevalueofthevariable(Yt+h)ofinterestisdefinedastheinverseoftheconditionaldistributionfunc-
tionFY?th∣Xt(r∣xt)of(Yt+h)on(Xt).Incontrasttothelinearquantileregression
modelusedbyAdrianetal.(2019),assumingalinearrelationshipbetweentheconditionalquantilesandexplanatoryvariables,thecopulabasedquantilere-gressionmethodallowsustoinvestigateanonlinearrelationshipbetweentheconditionalquantilesandcovariatesbymodelingtheconditionaldistributionfunction(FYt+h∣Xt)asacopulafunction.8)
Specifically,wesupposethatthevariable(Yt+h)ofinterestandcovariates
spectively.Thenwedefine(Vt+h)and
1followunivariatemarginaldistributionfunctionsFYt+hand(FXj)1,re-
8)Linearquantileregressionmodelssusceptibletothepotentialissueofquantilecrossingasconditionalquantilesarea?inefunctionsofcovariatesXt.Underthisspecification,theslopeparametersdependontheprobabilityindexτ,whichmaycausequantilesatdifferentvaluesofτtocrosseachother,and,therefore,theconditionalquantilescannotbelinearincovariatesXt.Thisissuepossiblyleadstobiasintheestimation,which,inturn,mayresultinover-orunderestimatingrisks.Ontheotherhand,thecopula-basedconditionalquantilefunctionnaturallysatisfiesmonotonicitywithoutsuchanissue.
9
BOKWorkingPaperNo.2024-10
FXj(Xj)bytheprobabilityintegraltransformation(PIT)of(Yt+h)and(Xjt),re-spectively,whichareuniformlydistributedontheinterval[0,1],andsetthejointdistributionof(Yt+h)and(Xt)as
F(yt+h,x1t,...,xMt)=C(vt+h,u1t,...,uMt),
whereCdenotesacopulathatisa(M+1)-dimensionaldistributionfunctiononthehypercube[0,1]M+1withuniformlydistributedmarginals.Theconditionaldistributionfunction(FYt+h∣Xt)of(Yt+h)on(Xt)cannowbewrittenasthatoftheirPITcounterparts,i.e.,
FYt+h∣Xt(r∣xt)=CVt+h∣Ut(r∣ut),
forr∈R.Asaresult,theconditionalquantilefunctionof(Yt+h)on(Xt)canbeobtainedfromtheconditionalcopulaquantilefunctionCVt+h∣Utof(Vt+h)on(Ut)
as
QYt+h∣Xt(τ∣xt)=FY?th∣Xt(CVt+h∣Ut(τ∣ut)),(II.1)
forτ∈(0,1).AD-vine,asasubclassofregularvinecopulas,allowsustomodelmultivariatecopulasusingtheblocksofbivariatecopulas,aso-calledpair-copulaconstruction.RefertoAasetal.(2009)foradetailedexaminationofbivariatepair-copulas.KrausandCzado(2017)implementaD-vinecopulatomodelquan-tileregressionsandshowthattheproposedmethodworksfastandaccuratelyeveninhighdimensions.
Inpractice,usingaD-vinecopulabasedquantileregression,weestimateconditionalquantilesofh-quarter-aheadrealGDPgapforh=1,...,4.Toobtain
adensityforecastofone-year-aheadrealGDPgrowth,wetransformestimatesoftheh-quarter-aheadrealGDPgaptotheconditionalquantilesoftheone-year-aheadrealGDPgrowthrateandthenfitthoseestimatestotheskewedt-distribution.Toestimatethenon-linearquantileregressionmodel(II.1),weconsidertheh-quarter-aheadrealGDPgap,whichisthecyclicalcomponentofrealGDPastheresponsevariable.FollowingHamilton(2018),wedecomposetherealGDPintotrendandcyclicalcomponentsbyregressingtheh-quarter-ahead
UsingDensityForecasttoImproveMeanForecastofGDPGrowthinKorea
10
logrealGDPontheconstant,current,andlaggedvaluesoflogrealGDP.Forexplanatoryvariables,weusetherealGDPgap,theFCI,theU.S.FFR,andthedifferencebetweentheU.S.FFRandthecallrateinKoreaavailableattimet.DetailsforconstructingrealGDPgapandFCIareavailableinAppendixA.Thedatasetusedintheestimationofdensityforecastisavailablefrom1991:Q2to2022:Q4.AllvariablesusedfordataconstructionareobtainedfromtheBOKEconomicStatisticsSystem(ECOS).
WeobtainapproximateestimatesoftheconditionalquantilefunctionfortheGDPgapforuptofourquartersaheadbyestimatinganonlinearquantileregression(II.1).Foreachquantile,weconverttheh-quarter-aheadGDPgapintothelevelofGDPbyaddingbackthetrendcomponentestimatedusingHamilton’sregression-basedfilter.Werandomlydrawh-period-aheadrealGDP30,000timesfromtheconditionalquantilesoftherealGDPlevelandcalculatetheone-year-aheadGDPgrowthrateforeachsimulationoverthepreviousfourquartersofrealGDPobservationstoobtainconditionalquantilesoftheone-year-aheadrealGDPgrowthrate.
Inthesubsequentstep,asinAdrianetal.(2019),wefittheskewedt-densitytosmooththeconditionalquantilevaluesandrecoveraprobabilitydensityfunctionof
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年吉安市第十二中學(xué)面向社會公開招聘編外工作人員參考考試試題及答案解析
- 2025年宿州市下關(guān)中學(xué)招聘教師60名考試核心試題及答案解析
- 2025年中煤綠能科技(北京)有限公司本部及所屬企業(yè)公開招聘備考題庫及答案詳解參考
- 2025年重慶一國企招聘工作人員21名備考題庫及一套答案詳解
- 2025年貴州機(jī)電職業(yè)技術(shù)學(xué)院引進(jìn)高技能人才備考題庫參考答案詳解
- 2025年湖北文旅資本控股有限公司招聘備考題庫及答案詳解1套
- 2025年建陽法院招聘備考題庫技術(shù)人員1名及1套參考答案詳解
- 2025黑龍江哈爾濱啟航勞務(wù)派遣有限公司派遣到哈爾濱工業(yè)大學(xué)化工與化學(xué)學(xué)院招聘考試重點(diǎn)試題及答案解析
- 2025年貴陽產(chǎn)業(yè)發(fā)展控股集團(tuán)有限公司集中招聘27人備考題庫完整答案詳解
- 2025年關(guān)于招聘急需專業(yè)兼職教師的備考題庫完整答案詳解
- 2025秋人教版(新教材)初中美術(shù)八年級上冊知識點(diǎn)及期末測試卷及答案
- 2026年保安員考試題庫500道附完整答案(歷年真題)
- 2025至2030中國司法鑒定行業(yè)發(fā)展研究與產(chǎn)業(yè)戰(zhàn)略規(guī)劃分析評估報告
- (2025年)危重病人的觀察與護(hù)理試題及答案
- 膝關(guān)節(jié)韌帶損傷康復(fù)課件
- 個人契約協(xié)議書范本
- 醫(yī)藥區(qū)域經(jīng)理述職報告
- 養(yǎng)老事業(yè)與養(yǎng)老產(chǎn)業(yè)協(xié)同發(fā)展路徑探析
- 建筑施工項(xiàng)目職業(yè)病危害防治措施方案
- 船員上船前安全培訓(xùn)課件
- 袖閥注漿管施工方案
評論
0/150
提交評論