版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2025屆江西省九江市高二數(shù)學第一學期期末經典模擬試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.如圖所示,某空間幾何體的三視圖是3個全等的等腰直角三角形,且直角邊長為2,則該空間幾何體的體積為()A. B.C. D.2.把點隨機投入長為,寬為的矩形內,則點與矩形四邊的距離均不小于的概率為()A. B.C. D.3.在三棱錐中,點E,F(xiàn)分別是的中點,點G在棱上,且滿足,若,則()A. B.C. D.4.已知數(shù)列滿足,,.設,若對于,都有恒成立,則最大值為A.3 B.4C.7 D.95.已知直線與直線垂直,則()A. B.C. D.6.在四棱錐中,底面是正方形,為的中點,若,則()A. B.C. D.7.函數(shù)y=ln(1﹣x)的圖象大致為()A. B.C D.8.若雙曲線的漸近線方程為,則實數(shù)a的值為()A B.C.2 D.9.由下面的條件一定能得出為銳角三角形的是()A. B.C. D.10.若,滿足約束條件則的最大值是A.-8 B.-3C.0 D.111.已知,,,則,,的大小關系是A. B.C. D.12.若,則x的值為()A.4 B.6C.4或6 D.8二、填空題:本題共4小題,每小題5分,共20分。13.已知,,且,則的值是_________.14.從1,3,5,7中任取2個數(shù)字,從0,2,4,6,8中任取2個數(shù)字,組成沒有重復數(shù)字的四位數(shù),這樣的四位數(shù)一共有___________個.(用數(shù)字作答)15.設、、是三個不同的平面,、是兩條不同的直線,給出下列三個結論:①若,,則;②若,,則;③若,,則其中,正確結論的序號為__16.在下列所示電路圖中,下列說法正確的是____(填序號)(1)如圖①所示,開關A閉合是燈泡B亮的充分不必要條件;(2)如圖②所示,開關A閉合是燈泡B亮的必要不充分條件;(3)如圖③所示,開關A閉合是燈泡B亮的充要條件;(4)如圖④所示,開關A閉合是燈泡B亮的必要不充分條件三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知數(shù)列,,,為其前n項和,且滿足.(1)求數(shù)列的通項公式;(2)設,求數(shù)列的前n項和18.(12分)如圖,在四棱錐中,底面為的中點(1)求證:平面;(2)若,求平面與平面的夾角大小19.(12分)已知雙曲線C:(,)的一條漸近線的方程為,雙曲線C的右焦點為,雙曲線C的左、右頂點分別為A,B(1)求雙曲線C的方程;(2)過右焦點F的直線l與雙曲線C的右支交于P,Q兩點(點P在x軸的上方),直線AP的斜率為,直線BQ的斜率為,證明:為定值20.(12分)如圖,在四棱錐中,底面是正方形,側面底面,為側棱上一點(1)求證:;(2)若為中點,平面與側棱于點,且,求四棱錐的體積21.(12分)已知圓M過C(1,﹣1),D(﹣1,1)兩點,且圓心M在x+y﹣2=0上.(1)求圓M的方程;(2)設P是直線3x+4y+8=0上的動點,PA,PB是圓M的兩條切線,A,B為切點,求四邊形PAMB面積的最小值.22.(10分)已知橢圓:的左、右焦點分別為,,離心率為,且過點.(1)求橢圓的標準方程;(2)若過點的直線與橢圓相交于,兩點(A、B非橢圓頂點),求的最大值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】在該空間幾何體的直觀圖中去求其體積即可.【詳解】依托棱長為2的正方體得到該空間幾何體的直觀圖為三棱錐則故選:A2、A【解析】確定矩形四邊的距離均不小于的點構成的區(qū)域,由幾何概型面積型的公式計算可得結果.【詳解】若點與矩形四邊的距離均不小于,則其落在如圖所示的陰影區(qū)域內,所求概率.故選:A.3、B【解析】利用空間向量的加、減運算即可求解.【詳解】由題意可得故選:B.4、A【解析】整理數(shù)列的通項公式有:,結合可得數(shù)列是首項為,公比為的等比數(shù)列,則,,原問題即:恒成立,當時,,即>3,綜上可得:的最大值為3.本題選擇A選項點睛:數(shù)列的遞推關系是給出數(shù)列的一種方法,根據(jù)給出的初始值和遞推關系可以依次寫出這個數(shù)列的各項,由遞推關系求數(shù)列的通項公式,常用的方法有:①求出數(shù)列的前幾項,再歸納猜想出數(shù)列的一個通項公式;②將已知遞推關系式整理、變形,變成等差、等比數(shù)列,或用累加法、累乘法、迭代法求通項5、D【解析】根據(jù)互相垂直兩直線的斜率關系進行求解即可.【詳解】由,所以直線的斜率為,由,所以直線的斜率為,因為直線與直線垂直,所以,故選:D6、C【解析】由為的中點,根據(jù)向量的運算法則,可得,即可求解.【詳解】由底面是正方形,E為的中點,且,根據(jù)向量的運算法則,可得.故選:C.7、C【解析】根據(jù)函數(shù)的定義域和特殊點,判斷出正確選項.【詳解】由,解得,也即函數(shù)的定義域為,由此排除A,B選項.當時,,由此排除D選項.所以正確的為C選項.故選:C【點睛】本小題主要考查函數(shù)圖像識別,屬于基礎題.8、D【解析】由雙曲線的漸近線方程結合已知可得.【詳解】雙曲線方程為所以漸近線為,故,解得:.故選:D9、D【解析】對于A,兩邊平方得,由得,即為鈍角;對于B,由正弦定理求出,進而求出,可得結果;對于C,根據(jù)平方關系將余弦化為正弦,用正弦定理可將角轉化為邊,進而可得的值,從而作出判斷;對于D,由可得,推出,,,故可知三個內角均為銳角【詳解】解:對于A,由,兩邊平方整理得,,因為,所以,所以,所以,所以為鈍角三角形,故A不正確;對于B,由,得,所以,因為,所以,所以或,所以或,所以為直角三角形或鈍角三角形,故B不正確;對于C,因為,所以,即,由正弦定理得,由余弦定理得,因為,所以,故三角形為鈍角三角形,C不正確;對于D,由可得,因為中最多只有一個鈍角,所以,,中最多只有一個為負數(shù),所以,,,所以中三個內角都為銳角,所以為銳角三角形,故D正確;故選:D10、C【解析】作出可行域,把變形為,平移直線過點時,最大.【詳解】作出可行域如圖:由得:,作出直線,平移直線過點時,.故選C.【點睛】本題主要考查了簡單線性規(guī)劃問題,屬于中檔題.11、B【解析】若對數(shù)式的底相同,直接利用對數(shù)函數(shù)的性質判斷即可,若底不同,則根據(jù)結構構造函數(shù),利用函數(shù)的單調性判斷大小【詳解】對于的大?。?,,明顯;對于的大?。簶嬙旌瘮?shù),則,當時,在上單調遞增,當時,在上單調遞減,即對于的大小:,,,故選B【點睛】將兩兩變成結構相同的對數(shù)形式,然后利用對數(shù)函數(shù)的性質判斷,對于結構類似的,可以通過構造函數(shù)來來比較大小,此題是一道中等難度的題目12、C【解析】根據(jù)組合數(shù)的性質可求解.【詳解】,或,即或.故選:C二、填空題:本題共4小題,每小題5分,共20分。13、【解析】根據(jù)空間向量可得,結合計算即可.【詳解】由題意知,,所以,解得.故答案:314、1296【解析】根據(jù)取出的數(shù)字是否含有零,分類討論,若不含零,則有四位數(shù)個,若含有零,則有四位數(shù)個,再根據(jù)分類加法計數(shù)原理即可求出【詳解】若取出的數(shù)字中不含零,則有四位數(shù)個;若取出的數(shù)字中含零,則有四位數(shù)個;所以,這樣的四位數(shù)有個故答案為:129615、①②【解析】利用線面垂直的性質可判斷命題①、②的正誤;利用特例法可判斷命題③的正誤.綜合可得出結論.【詳解】、、是三個不同的平面,、是兩條不同的直線.對于①,若,,由同垂直于同一平面的兩直線平行,可得,故①正確;對于②,若,,由同垂直于同一直線的兩平面平行,可得,故②正確;對于③,若,,考慮墻角處的三個平面兩兩垂直,可判斷、相交,則不正確故答案為:①②【點睛】本題考查空間中線面、面面位置關系有關命題真假的判斷,考查推理能力,屬于基礎題.16、(1)(2)(3)【解析】充分不必要條件是該條件成立時,可推出結果,但結果不一定需要該條件成立;必要條件是有結果必須有這一條件,但是有這一條件還不夠;充要條件是條件和結果可以互推;條件和結果沒有互推關系的是既不充分也不必要條件【詳解】(1)開關閉合,燈泡亮;而燈泡亮時,開關不一定閉合,所以開關閉合是燈泡亮的充分不必要條件,選項(1)正確.(2)開關閉合,燈泡不一定亮;而燈泡亮時,開關必須閉合,所以開關閉合是燈泡亮的必要不充分條件,選項(2)正確.(3)開關閉合,燈泡亮;而燈泡亮時,開關必須閉合,所以開關閉合是燈泡亮的充要條件,選項(3)正確.(4)開關閉合,燈泡不一定亮;而燈泡亮時,開關不一定閉合,所以開關閉合是燈泡亮的既不充分也不必要條件,選項(4)錯誤.故答案為(1)(2)(3).三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】(1)按照所給條件,先算出的表達式,再按照與的關系計算,;(2)裂項相消求和即可.【小問1詳解】由題可知數(shù)列是等差數(shù)列,所以,,又因為,所以;【小問2詳解】所以;故答案為:,.18、(1)證明見解析(2)【解析】(1)取中點,連結,證得,利用線面平行的判定定理,即可求解;(2)以為原點,以方面為軸,以方向為軸,以方向為軸,建立坐標系,利用平面和平面的法向量的夾角公式,即可求解【小問1詳解】取中點,連結,由,,則,又由平面,平面,所以平面.【小問2詳解】以為原點,以方面為軸,以方向為軸,以方向為軸,建立坐標系,可得,,,,,則,,設平面的一個法向量為,則,即,令,則又平面的法向量為;則,所以平面與平面所成的銳二面角為.19、(1);(2)證明見解析.【解析】(1)由題可得,,即求;(2)由題可設直線方程與雙曲線方程聯(lián)立,利用韋達定理法即證【小問1詳解】由題意可知在雙曲線C中,,,,解得所以雙曲線C的方程為;【小問2詳解】證法一:由題可知,設直線,,,由,得,則,,∴,,;當直線的斜率不存在時,,此時.綜上,為定值證法二:設直線PQ方程為,,,聯(lián)立得整理得,由過右焦點F的直線l與雙曲線C的右支交于P,Q兩點,則解得,,,,由雙曲線方程可得,,,,∵,∴,,證法三:設直線PQ方程為,,,聯(lián)立得整理得,由過右焦點F的直線l與雙曲線C的右支交于P,Q兩點,則解得,∴,,由雙曲線方程可得,,則,所以,,,∴為定值20、(1)證明見解析(2)【解析】(1)利用面面垂直的性質定理可得出平面,再利用線面垂直的性質可得出;(2)分析可知為的中點,平面,計算出梯形的面積,利用錐體的體積公式可求得四棱錐的體積【小問1詳解】證明:因為四邊形為正方形,則,因為側面底面,平面平面,平面,所以平面,又平面,所以.【小問2詳解】解:因為,平面,平面,所以,平面,因為平面,平面平面,所以,所以,,則,所以,四邊形是直角梯形,又是中點,所以,,所以,由平面,平面,所以,從而,正三角形中,是中點,,即,,所以平面,因為,所以.21、(1);(2).【解析】(1)設圓的方程為:,由已知列出方程組,解之可得圓的方程;(2)由已知得四邊形的面積為,即有,又有.因此要求的最小值,只需求的最小值即可,根據(jù)點到直線的距離公式可求得答案.【詳解】解:(1)設圓方程為:,根據(jù)題意得,故所求圓M的方程為:;(2)如圖,四邊形的面積為,即又,所以,而,即.因此要求的最小值,只需求的最小值即可,的最小值即為點到直線的距離所
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 商業(yè)聚會活動策劃方案(3篇)
- 精制飲片營銷方案(3篇)
- 賣干果營銷方案(3篇)
- 雙店營銷方案(3篇)
- 工程進度獎勵合同協(xié)議
- 2025年商業(yè)設計合同協(xié)議
- 2025年2025年智力障礙康復合同協(xié)議
- 2026年濟寧職業(yè)技術學院單招職業(yè)適應性考試題庫及答案詳解一套
- 2026年麗水職業(yè)技術學院單招職業(yè)傾向性測試題庫含答案詳解
- 2026年吉林省白城市單招職業(yè)傾向性測試題庫及參考答案詳解1套
- (2025年標準)科研資助經費協(xié)議書
- 知識產權侵權培訓課件
- 2025年四川省事業(yè)單位招聘考試綜合類公共基礎知識真題模擬試卷
- 腫瘤常見急癥及處理
- 闌尾炎健康宣教課件
- 2025年輔助考試員考試題庫
- 供應鏈協(xié)同策略-洞察及研究
- 包拯課件教學課件
- Metal干法刻蝕工藝介紹課件
- 家具促銷活動啟動會
- 礦洞探險之旅行業(yè)深度調研及發(fā)展項目商業(yè)計劃書
評論
0/150
提交評論