版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
甘肅省酒泉市2025屆高二數(shù)學(xué)第一學(xué)期期末考試模擬試題注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.過點且與拋物線只有一個公共點的直線有()A.1條 B.2條C.3條 D.0條2.已知正實數(shù)x,y滿足4x+3y=4,則的最小值為()A. B.C. D.3.復(fù)數(shù),且z在復(fù)平面內(nèi)對應(yīng)的點在第二象限,則實數(shù)m的值可以為()A.2 B.C. D.04.雙曲線的左右焦點分別是,,直線與雙曲線在第一象限的交點為,在軸上的投影恰好是,則雙曲線的離心率是()A. B.C. D.5.已知橢圓的左右焦點分別為、,點在橢圓上,若、、是一個直角三角形的三個頂點,則點到軸的距離為A B.4C. D.6.若,都為正實數(shù),,則的最大值是()A. B.C. D.7.的展開式中的系數(shù)為,則()A. B.C. D.8.已知關(guān)于的不等式的解集是,則的值是()A. B.5C. D.79.2019年湖南等8省公布了高考改革綜合方案將采取“”模式即語文、數(shù)學(xué)、英語必考,考生首先在物理、歷史中選擇1門,然后在思想政治、地理、化學(xué)、生物中選擇2門,一名同學(xué)隨機選擇3門功課,則該同學(xué)選到歷史、地理兩門功課的概率為()A. B.C. D.10.方程表示的曲線經(jīng)過的一點是()A. B.C. D.11.函數(shù)的導(dǎo)數(shù)為()A.B.CD.12.已知四面體中,,若該四面體的外接球的球心為,則的面積為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知O為坐標(biāo)原點,,是拋物線上的兩點,且滿足,則______;若OM垂直AB于點M,且為定值,則點Q的坐標(biāo)為__________.14.用1,2,3,4,5組成沒有重復(fù)數(shù)字的五位數(shù),其中個位小于百位且百位小于萬位的五位數(shù)有n個,則的展開式中,的系數(shù)是___________.(用數(shù)字作答)15.與同一條直線都相交的兩條直線的位置關(guān)系是________16.如圖,正四棱錐的棱長均為2,點E為側(cè)棱PD的中點.若點M,N分別為直線AB,CE上的動點,則MN的最小值為______三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知圓,直線.(1)當(dāng)為何值時,直線與圓相切;(2)當(dāng)直線與圓相交于、兩點,且時,求直線的方程.18.(12分)某中學(xué)共有名學(xué)生,其中高一年級有名學(xué)生,為了解學(xué)生的睡眠情況,用分層抽樣的方法,在三個年級中抽取了名學(xué)生,依據(jù)每名學(xué)生的睡眠時間(單位:小時),繪制出了如圖所示的頻率分布直方圖.(1)求樣本中高一年級學(xué)生人數(shù)及圖中的值;(2)估計樣本數(shù)據(jù)的中位數(shù)(保留兩位小數(shù));(3)估計全校睡眠時間超過個小時的學(xué)生人數(shù).19.(12分)如圖,四棱錐中,是邊長為2的正三角形,底面為菱形,且平面平面,,為上一點,滿足.(1)證明:;(2)求二面角的余弦值.20.(12分)等差數(shù)列的公差d不為0,滿足成等比數(shù)列,數(shù)列滿足.(1)求數(shù)列與通項公式:(2)若,求數(shù)列的前n項和.21.(12分)在等差數(shù)列中,記為數(shù)列的前項和,已知:.(1)求數(shù)列的通項公式;(2)求使成立的的值.22.(10分)給定函數(shù).(1)判斷函數(shù)f(x)的單調(diào)性,并求出f(x)的極值;(2)畫出函數(shù)f(x)的大致圖象,無須說明理由(要求:坐標(biāo)系中要標(biāo)出關(guān)鍵點);(3)求出方程的解的個數(shù).
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】過的直線的斜率存在和不存在兩種情況分別討論即可得出答案.【詳解】易知過點,且斜率不存在的直線為,滿足與拋物線只有一個公共點.當(dāng)直線的斜率存在時,設(shè)直線方程為,與聯(lián)立得,當(dāng)時,方程有一個解,即直線與擾物線只有一個公共點.故滿足題意的直線有2條.故選:B2、A【解析】將4x+3y=4變形為含2x+1和3y+2的等式,即2(2x+1)+(3y+2)=8,再由換元法、基本不等式換“1”的代換求解即可【詳解】由正實數(shù)x,y滿足4x+3y=4,可得2(2x+1)+(3y+2)=8,令a=2x+1,b=3y+2,可得2a+b=8,∴,即,當(dāng)且僅當(dāng)時取等號,∴的最小值為.故選:A3、B【解析】根據(jù)復(fù)數(shù)的幾何意義求出的范圍,即可得出答案.【詳解】解:當(dāng)z在復(fù)平面內(nèi)對應(yīng)的點在第二象限時,則有,可得,結(jié)合選項可知,B正確故選:B4、D【解析】根據(jù)題意的到,,代入到雙曲線方程,解得,即,則,即,即,求解方程即可得到結(jié)果.【詳解】設(shè)原點為,∵直線與雙曲線在第一象限的交點在軸上的投影恰好是,∴,且,∴,將代入到雙曲線方程,可得,解得,即,則,即,即,解得(舍負),故.故選:D.5、D【解析】設(shè)橢圓短軸的一個端點為根據(jù)橢圓方程求得c,進而判斷出,即得或令,進而可得點P到x軸的距離【詳解】解:設(shè)橢圓短軸的一個端點為M由于,,;,只能或令,得,故選D【點睛】本題主要考查了橢圓的基本應(yīng)用考查了學(xué)生推理和實際運算能力是基礎(chǔ)題6、B【解析】由基本不等式,結(jié)合題中條件,直接求解,即可得出結(jié)果.【詳解】因為,都為正實數(shù),,所以,當(dāng)且僅當(dāng),即時,取最大值.故選:D7、B【解析】根據(jù)二項式展開式的通項,先求得x的指數(shù)為1時r的值,再求得a的值.【詳解】由題意得:二項式展開式的通項為:,令,則,故選:B8、D【解析】由題意可得的根為,然后利用根與系數(shù)的關(guān)系列方程組可求得結(jié)果【詳解】因為關(guān)于的不等式的解集是,所以方程的根為,所以,得,所以,故選:D9、A【解析】先由列舉法計算出基本事件的總數(shù),然后再求出該同學(xué)選到歷史、地理兩門功課的基本事件的個數(shù),基本事件個數(shù)比即為所求概率.【詳解】由題意,記物理、歷史分別為、,從中選擇1門;記思想政治、地理、化學(xué)、生物為、、、,從中選擇2門;則該同學(xué)隨機選擇3門功課,所包含的基本事件有:,,,,,,,,,,,,共個基本事件;該同學(xué)選到歷史、地理兩門功課所包含的基本事件有:,,共個基本事件;該同學(xué)選到物理、地理兩門功課的概率為.故選:A.【點睛】本題考查求古典概型的概率,屬于基礎(chǔ)題型.10、C【解析】當(dāng)時可得,可得答案.【詳解】當(dāng)時可得所以方程表示的曲線經(jīng)過的一點是,且其它點都不滿足方程,故選:C11、B【解析】由導(dǎo)數(shù)運算法則可求出.【詳解】,.故選:B.12、C【解析】根據(jù)四面體的性質(zhì),結(jié)合線面垂直的判定定理、球的性質(zhì)、正弦定理進行求解即可.【詳解】由圖設(shè)點為中點,連接,由,所以,面,則面,且,所以球心面,所以平面與球面的截面為大圓,延長線與此大圓交于點.在三角形中,由,所以,由正弦定理知:三角形的外接圓半徑為,設(shè)三角形的外接圓圓心為點,則面,有,則,設(shè)的外接圓圓心為點,則面,由正弦定理知:三角形PAB的外接圓半徑為,所以,又三角形中,,所以為的角平分線,則,在直角三角形OMD中,,在直角三角形OED中,,在三角形中,取中點,由,所以,故選:C.【點睛】關(guān)鍵點睛:運用正弦定理、勾股定理、線面垂直的判定定理是解題的關(guān)鍵.二、填空題:本題共4小題,每小題5分,共20分。13、①.-24②.【解析】由拋物線的方程及數(shù)量積的運算可求出,設(shè)直線AB的方程為,聯(lián)立拋物線方程,由根與系數(shù)的關(guān)系可求出,由圓的定義求出圓心即可.【詳解】由,即解得或(舍去).設(shè)直線AB的方程為.由,消去x并整理得,.又,,直線AB恒過定點N(6,0),OM垂直AB于點M,點M在以O(shè)N為直徑圓上.|MQ|為定值,點Q為該圓的圓心,又即Q(3,0).故答案為:;14、2022【解析】根據(jù)排列和組合計數(shù)公式求出,然后利用二項式定理進行求解即可【詳解】解:用1,2,3,4,5組成沒有重復(fù)數(shù)字的五位數(shù)中,滿足個位小于百位且百位小于萬位的五位數(shù)有個,即,當(dāng)時,,則系數(shù)是,故答案為:202215、平行,相交或者異面【解析】由空間中兩直線的位置關(guān)系求解即可【詳解】由題意與同一條直線都相交的兩條直線的位置關(guān)系可能是:平行,相交或者異面,故答案為:平行,相交或者異面,16、【解析】根據(jù)題意,先建立空間直角坐標(biāo)系,然后寫出相關(guān)點的坐標(biāo),再寫出相關(guān)的向量,然后根據(jù)點分別為直線上寫出點的坐標(biāo),這樣就得到,然后根據(jù)的取值范圍而確定【詳解】建立如圖所示的空間直角坐標(biāo)系,則有:,,,,,可得:設(shè),且則有:,可得:則有:故則當(dāng)且僅當(dāng)時,故答案為:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)或.【解析】(1)將圓的方程表示為標(biāo)準(zhǔn)方程,確定圓心坐標(biāo)與半徑,利用圓心到直線的距離可求得實數(shù)的值;(2)求出圓心到直線的距離,利用、、三者滿足勾股定理可求得的方程,解出的值,即可得出直線的方程.【詳解】將圓C的方程配方得標(biāo)準(zhǔn)方程為,則此圓的圓心為,半徑為.(1)若直線與圓相切,則有,解得;(2)圓心到直線的距離為,由勾股定理可得,可得,整理得,解得或,故所求直線方程為或.【點睛】方法點睛:圓的弦長的常用求法(1)幾何法:求圓的半徑為,弦心距為,弦長為,則;(2)代數(shù)方法:運用根與系數(shù)的關(guān)系及弦長公式.18、(1)樣本中高一年級學(xué)生的人數(shù)為,;(2);(3).【解析】(1)利用分層抽樣可求得樣本中高一年級學(xué)生的人數(shù),利用頻率直方圖中所有矩形的面積之和為可求得的值;(2)利用中位數(shù)左邊的矩形面積之和為可求得中位數(shù)的值;(3)利用頻率分布直方圖可計算出全校睡眠時間超過個小時的學(xué)生人數(shù).【小問1詳解】解:樣本中高一年級學(xué)生的人數(shù)為.,解得.【小問2詳解】解:設(shè)中位數(shù)為,前兩個矩形的面積之和為,前三個矩形的面積之和為,所以,則,得,故樣本數(shù)據(jù)的中位數(shù)約為.【小問3詳解】解:由圖可知,樣本數(shù)據(jù)落在的頻率為,故全校睡眠時間超過個小時的學(xué)生人數(shù)約為.19、(1)證明見解析;(2).【解析】(1)設(shè)為中點,連接,根據(jù),證明平面得到答案.(2)以為原點,,,分別為,,軸建立空間直角坐標(biāo)系,計算各點坐標(biāo),計算平面和平面的法向量,根據(jù)向量夾角公式計算得到答案.【詳解】(1)設(shè)為中點,連接,,∵,∴,又∵底面四邊形為菱形,,∴為等邊三角形,∴,又∴,,平面,∴平面,而平面,∴.(2)∵平面平面,平面平面,,∴平面以為原點,,,分別為,,軸建立空間直角坐標(biāo)系,則,,,,,,由,,,即,∴,,,設(shè)為平面的法向量,則由,令,得,,∴,設(shè)為平面的法向量,則由,令,得,,∴,設(shè)二面角的平面角為,則,∴二面角的的余弦值為.【點睛】本題考查了線線垂直,二面角,意在考查學(xué)生的計算能力和空間想象能力,建立空間直角坐標(biāo)系是解題的關(guān)鍵.20、(1),(2)【解析】(1)根據(jù)等比中項的性質(zhì)及等差數(shù)列的通項公式得到方程求出公差,即可求出的通項公式,由,當(dāng)時,求出,當(dāng)時,兩式作差,即可求出;(2)由(1)可得,利用錯位相減法求和即可;【小問1詳解】解:由已知,又,所以故解得(舍去)或∴∵①故當(dāng)時,可知,∴,當(dāng)時,可知②①②得∴又也滿足,故當(dāng)時,都有;【小問2詳解】解:由(1)知,故③,∴④,由③④得整理得.21、(1);(2)或.【解析】(1)根據(jù)給定條件求出數(shù)列的公差及首項即可計算作答.(2)由(1)求出,建立方程求解作答.【小問1詳解】設(shè)等差數(shù)列公差為,因,則,解得,于是得,所以數(shù)列的通項公式為:.【小問2詳解】由(1)知,,由得:,即,解得或,所以使成立的的值是或.22、(1)函數(shù)的減區(qū)間為,增區(qū)間為,有極小值,無極大值;(2)具體見解析
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2026年醫(yī)院免疫治療技術(shù)應(yīng)用研究合同
- 2026年品牌聯(lián)合營銷合同
- 兼并公司合同(標(biāo)準(zhǔn)版)
- 2026年藥品FDA突破性療法認(rèn)定申請合同
- 2025年線上酒店預(yù)訂平臺建設(shè)可行性研究報告
- 2025年城市衛(wèi)生公共設(shè)施提高項目可行性研究報告
- 2025年疫情防控物資儲備中心建設(shè)項目可行性研究報告
- 2025年新能源電動滑板車項目可行性研究報告
- 2025年綠色生態(tài)農(nóng)業(yè)示范區(qū)項目可行性研究報告
- 中歐外貿(mào)協(xié)議書
- 新版GMP質(zhì)量手冊
- 小品皇帝選妃臺詞-皇帝選妃校園搞笑話劇劇本
- 《fda法規(guī)講座》課件
- 2024年秋季新人教PEP版三年級上冊英語全冊教案
- 西藏拉薩北京實驗中學(xué)2025屆英語九年級第一學(xué)期期末復(fù)習(xí)檢測試題含解析
- 閃亮的日子混聲合唱簡譜
- GB/T 43933-2024金屬礦土地復(fù)墾與生態(tài)修復(fù)技術(shù)規(guī)范
- 2噸手動叉車的液壓系統(tǒng)設(shè)計
- 2023-2024學(xué)年春季小學(xué)二年級上冊語文部編版課時練第20課《霧在哪里》01(含答案)
- 甲狀腺癌教學(xué)查房
- 動物寄生蟲病學(xué)許金俊-第四章外寄生蟲病
評論
0/150
提交評論