2025屆河北省秦皇島市達標名校高二上數(shù)學期末質量跟蹤監(jiān)視模擬試題含解析_第1頁
2025屆河北省秦皇島市達標名校高二上數(shù)學期末質量跟蹤監(jiān)視模擬試題含解析_第2頁
2025屆河北省秦皇島市達標名校高二上數(shù)學期末質量跟蹤監(jiān)視模擬試題含解析_第3頁
2025屆河北省秦皇島市達標名校高二上數(shù)學期末質量跟蹤監(jiān)視模擬試題含解析_第4頁
2025屆河北省秦皇島市達標名校高二上數(shù)學期末質量跟蹤監(jiān)視模擬試題含解析_第5頁
已閱讀5頁,還剩13頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2025屆河北省秦皇島市達標名校高二上數(shù)學期末質量跟蹤監(jiān)視模擬試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知離散型隨機變量X的分布列如下:X123P則數(shù)學期望()A. B.C.1 D.22.已知A,B,C是橢圓M:上三點,且A(A在第一象限,B關于原點對稱,,過A作x軸的垂線交橢圓M于點D,交BC于點E,若直線AC與BC的斜率之積為,則()A.橢圓M的離心率為 B.橢圓M的離心率為C. D.3.若復數(shù),則()A B.C. D.4.若關于x的方程有解,則實數(shù)的取值范圍為()A. B.C. D.5.在空間四邊形OABC中,,,,點M在線段OA上,且,N為BC中點,則等于()A. B.C. D.6.已知函數(shù)的導函數(shù)為,若的圖象如圖所示,則函數(shù)的圖象可能是()A B.C. D.7.在等比數(shù)列{an}中,a3,a15是方程x2+6x+2=0的根,則的值為()A. B.C. D.或8.某商場開通三種平臺銷售商品,五一期間這三種平臺的數(shù)據(jù)如圖1所示.該商場為了解消費者對各平臺銷售方式的滿意程度,用分層抽樣的方法抽取了6%的顧客進行滿意度調查,得到的數(shù)據(jù)如圖2所示.下列說法正確的是()A.樣本中對平臺一滿意的消費者人數(shù)約700B.總體中對平臺二滿意的消費者人數(shù)為18C.樣本中對平臺一和平臺二滿意的消費者總人數(shù)為60D.若樣本中對平臺三滿意消費者人數(shù)為120,則9.“趙爽弦圖”是我國古代數(shù)學的瑰寶,如圖所示,它是由四個全等的直角三角形和一個正方形構成.現(xiàn)用4種不同的顏色(4種顏色全部使用)給這5個區(qū)域涂色,要求相鄰的區(qū)域不能涂同一種顏色,每個區(qū)域只涂一種顏色,則不同的涂色方案有()A.24種 B.48種C.72種 D.96種10.設,則當數(shù)列{an}的前n項和取得最小值時,n的值為()A.4 B.5C.4或5 D.5或611.下列直線中,與直線垂直的是()A. B.C. D.12.已知數(shù)列是各項均為正數(shù)的等比數(shù)列,若,則公比()A. B.2C.2或 D.4二、填空題:本題共4小題,每小題5分,共20分。13.如圖是一個邊長為4的正方形二維碼,為了測算圖中黑色部分的面積,在正方形區(qū)域內隨機投擲1600個點,其中落入白色部分的有700個點,據(jù)此可估計黑色部分的面積為______________14.已知一個樣本數(shù)據(jù)為3,3,5,5,5,7,7,現(xiàn)在新加入一個3,一個5,一個7得到一個新樣本,則與原樣本數(shù)據(jù)相比,新樣本數(shù)據(jù)平均數(shù)______,方差______.(“變大”、“變小”、“不變”)15.某工廠年前加緊手套生產,設該工廠連續(xù)5天生產的手套數(shù)依次為,,,,(單位:萬只),若這組數(shù)據(jù),,,,的方差為4,且,,,,的平均數(shù)為8,則該工廠這5天平均每天生產手套______萬只16.設,復數(shù),,若是純虛數(shù),則的虛部為_________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知定義域為的函數(shù)是奇函數(shù),其中為指數(shù)函數(shù)且的圖象過點(1)求的表達式;(2)若對任意的.不等式恒成立,求實數(shù)的取值范圍;18.(12分)已知拋物線的焦點為,點為拋物線上一點,且.(1)求拋物線方程;(2)直線與拋物線相交于兩個不同的點,為坐標原點,若,求實數(shù)的值;19.(12分)如圖在直三棱柱中,為的中點,為的中點,是中點,是與的交點,是與的交點.(1)求證:;(2)求證:平面;(3)求直線與平面的距離.20.(12分)已知橢圓C與橢圓有相同的焦點,且長軸長為4(1)求C的標準方程;(2)直線,分別經過點與C相切,切點分別為A,B,證明:21.(12分)已知圓:,定點,Q為圓上的一動點,點P在半徑CQ上,且,設點P的軌跡為曲線E.(1)求曲線E的方程;(2)過點的直線交曲線E于A,B兩點,過點H與AB垂直的直線與x軸交于點N,當取最大值時,求直線AB的方程.22.(10分)設橢圓的左、右焦點分別為,.點滿足.(1)求橢圓的離心率;(2)設直線與橢圓相交于,兩點,若直線與圓相交于,兩點,且,求橢圓的方程.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】利用已知條件,結合期望公式求解即可【詳解】解:由題意可知:故選:D2、C【解析】設出點,,的坐標,將點,分別代入橢圓方程兩式作差,構造直線和的斜率之積,得到,即可求橢圓的離心率,利用,求出,可知點在軸上,且為的中點,則.【詳解】設,,,則,,,兩式相減并化簡得,即,則,則AB錯誤;∵,,∴,又∵,∴,即,解得,則點在軸上,且為的中點即,則正確.故選:C.3、A【解析】根據(jù)復數(shù)的乘法運算即可求解.【詳解】由,故選:A4、C【解析】將對數(shù)方程化為指數(shù)方程,用x表示出a,利用基本不等式即可求a的范圍【詳解】,,當且僅當時取等號,故故選:C5、B【解析】由題意結合圖形,直接利用,求出,然后即可解答.【詳解】解:因為空間四邊形OABC如圖,,,,點M在線段OA上,且,N為BC的中點,所以.所以.故選:B.6、D【解析】根據(jù)導函數(shù)大于,原函數(shù)單調遞增;導函數(shù)小于,原函數(shù)單調遞減;即可得出正確答案.【詳解】由導函數(shù)得圖象可得:時,,所以在單調遞減,排除選項A、B,當時,先正后負,所以在先增后減,因選項C是先減后增再減,故排除選項C,故選:D.7、B【解析】由韋達定理得a3a15=2,由等比數(shù)列通項公式性質得:a92=a3a15=a2a16=2,由此求出答案【詳解】解:∵在等比數(shù)列{an}中,a3,a15是方程x2-6x+2=0的根,∴a3a15=2>0,a3+a15=-6<0∴a2a16=a3a15=2,a92=a3a15=2,∴a9=,∴,故選B【點睛】本題考查等比數(shù)列中兩項積與另一項的比值的求法,是基礎題,解題時要認真審題,注意等比數(shù)列的性質的合理運用8、C【解析】根據(jù)扇形圖和頻率分布直方圖判斷.【詳解】對于A:樣本中對平臺一滿意的人數(shù)為,故選項A錯誤;對于B:總體中對平臺二滿意的人數(shù)約為,故選項B錯誤;對于C:樣本中對平臺一和平臺二滿意的總人數(shù)為:,故選項C正確:對于D:對平臺三的滿意率為,所以,故選項D錯誤故選:C9、B【解析】根據(jù)題意,分2步進行分析區(qū)域①、②、⑤和區(qū)域③、④的涂色方法,由分步計數(shù)原理計算可得答案.【詳解】根據(jù)題意,分2步進行分析:當區(qū)域①、②、⑤這三個區(qū)域兩兩相鄰,有種涂色的方法;當區(qū)域③、④,必須有1個區(qū)域選第4種顏色,有2種選法,選好后,剩下的區(qū)域有1種選法,則區(qū)域③、④有2種涂色方法,故共有種涂色的方法.故選:B10、A【解析】結合等差數(shù)列的性質得到,解不等式組即可求出結果.【詳解】由,即,解得,因為,故.故選:A.11、C【解析】,,若,則,項,符合條件,故選12、B【解析】由兩式相除即可求公比.【詳解】設等比數(shù)列的公比為q,∵其各項均為正數(shù),故q>0,∵,∴,又∵,∴=4,則q=2.故選:B.二、填空題:本題共4小題,每小題5分,共20分。13、9【解析】先根據(jù)點數(shù)求解概率,再結合幾何概型求解黑色部分的面積【詳解】由題設可估計落入黑色部分概率設黑色部分的面積為,由幾何概型計算公式可得解得故答案為:914、①.不變②.變大【解析】通過計算平均數(shù)和方差來確定正確答案.【詳解】原樣本平均數(shù)為,原樣本方差為,新樣本平均數(shù)為,新樣本方差為.所以平均數(shù)不變,方差變大.故答案為:不變;變大15、2【解析】結合方差、平均數(shù)的公式列方程,化簡求得正確答案.【詳解】依題意設,則,.故答案為:16、【解析】由復數(shù)除法的運算法則求出,又是純虛數(shù),可求出,從而根據(jù)共軛復數(shù)及虛部的定義即可求解.【詳解】解:因為復數(shù),,所以,又是純虛數(shù),所以,所以,所以所以的虛部為,故答案:.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】(1)設(且),因為的圖象過點,求得a的值,再根據(jù)函數(shù)f(x)是奇函數(shù),利用f(0)=0即可求得n的值,得到f(x)的解析式,檢驗是奇函數(shù)即可;(2)將分式分離常數(shù)后,利用指數(shù)函數(shù)的性質可以判定f(x)在R上單調遞減,進而結合奇函數(shù)的性質將不等式轉化為二次不等式,根據(jù)二次函數(shù)的圖象和性質,求得對于對任意的恒成立時a的取值范圍即可.【詳解】解:(1)由題意,設(且),因為的圖象過點,可得,解得,即,所以,又因為為上的奇函數(shù),可得,即,解得,經檢驗,符合,所以(2)由函數(shù),可得在上單調遞減,又因為為奇函數(shù),所以,所以,即,又因為對任意的,不等式恒成立,令,即對任意的恒成立,可得,即,解得,所以實數(shù)的取值范圍為【點睛】本題考查函數(shù)的奇偶性,指數(shù)函數(shù)及其性質和函數(shù)不等式恒成立問題,關鍵是利用函數(shù)的單調性和奇偶性將不等式轉化為二次不等式在閉區(qū)間上恒成立問題,然后利用二次函數(shù)的圖象轉化為二次函數(shù)的端點值滿足的條件.另外注意,第一問中,利用特值f(0)=0求得解析式后,要注意檢驗對于任意的實數(shù)x,f(x)=-f(-x)恒成立.18、(1)(2)【解析】(1)根據(jù)拋物線過點,且,利用拋物線的定義求解;(2)設,聯(lián)立,根據(jù),由,結合韋達定理求解.【小問1詳解】解:由拋物線過點,且,得所以拋物線方程為;【小問2詳解】設,聯(lián)立得,,,,則,,即,解得或,又當時,直線與拋物線的交點中有一點與原點重合,不符合題意,故舍去;所以實數(shù)的值為.19、(1)證明見解析(2)證明見解析(3)【解析】(1)法一:通過建立空間直角坐標系,運用向量數(shù)量積證明,法二:通過線面垂直證明,法三:根據(jù)三垂線證明;(2)法一:通過建立空間直角坐標系,運用向量數(shù)量積證明,法二:通過面面平行證明線面平行;(3)法一:通過建立空間直角坐標系,運用向量方法求解,法二:運用等體積法求解.【小問1詳解】證明:法一:在直三棱柱中,因為,以點為坐標原點,方向分別為軸正方向建立如圖所示空間直角坐標系.因為,所以,所以所以,所以.法二:連接,在直三棱柱中,有面,面,所以,又,則,因為,所以面因為面,所以因為,所以四邊形為正方形,所以因為,所以面因為面,所以.法三:用三垂線定理證明:連接,在直三棱柱中,有面因為面,所以,又,則,因為,所以面所以在平面內的射影為,因為四邊形為正方形,所以,因此根據(jù)三垂線定理可知【小問2詳解】證明:法一:因為為的中點,為的中點,為中點,是與的交點,所以、,依題意可知為重心,則,可得所以,,設為平面的法向量,則即取得則平面的一個法向量為.所以,則,因為平面,所以平面.法二:連接.在正方形中,為的中點,所以且,所以四邊形是平行四邊形,所以又為中點,所以四邊形是矩形,所以且因為且,所以,所以四邊形為平行四邊形,所以.因為,平面平面平面平面,所以平面平面,平面,所以平面【小問3詳解】法一:由(2)知平面的一個法向量,且平面,所以到平面的距離與到平面的距離相等,,所以,所以點到平面的距離所以到平面的距離為法二:因為分別為和中點,所以為的重心,所以,所以到平面的距離是到平面距離的.取中點則,又平面平面,所以平面,所以到平面的距離與到平面的距離相等.設點到平面的距離為,由得,又,所以,所以到平面的距離是,所以到平面的距離為.20、(1);(2)證明見解析.【解析】(1)根據(jù)共焦點求出參數(shù)c,由長軸長求參數(shù)a,即可確定C的標準方程;(2)令過切線為,聯(lián)立橢圓C結合得到關于k的一元二次方程,根據(jù)根與系數(shù)關系即可證明結論.【小問1詳解】由題設,對于橢圓C有,又橢圓的焦點為,則,所以,故C的標準方程.【小問2詳解】由題設,直線,的斜率必存在,令橢圓C的切線方程為,聯(lián)立橢圓方程并整理可得:,由相切關系知:,整理得:,所以,即直線,相互垂直,則.21、(1)(2)或【解析】(1)結合已知條件可得到點P在線段QF的垂直平分線上,然后利用橢圓定義即可求解;(2)結合已知條件設出直線的方程,然后聯(lián)立橢圓方程,利用弦長公式求出,再設出直線NH的方程,求出N點坐標,進而求出,然后表示出,再利用換元法和均值不等式求解即可.【小問1詳解】設點的坐標為,∵,∴點P在線段QF垂直平分線上,∴,又∵,∴∴點P在以C,F(xiàn)為焦點的橢圓上,且,∴,∴曲線的方程為:.【小問2詳解】設直線AB方程為,,由,解得,,解得,由韋達定理可知,,,∴∵AB與HN垂直,∴直線NH的方程為,令,得,∴,又由,∴,∴設則∴當且僅當即時等號成立,有最大值,此時滿足,故,所以直線AB的方程為:,即或.22、(1);(2)【解析】(1)由及兩點間距離公式可建立等式,消去b,即可求解出,主要兩個根的的要舍去;

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論