蘭州市重點(diǎn)中學(xué)2025屆高二上數(shù)學(xué)期末綜合測試模擬試題含解析_第1頁
蘭州市重點(diǎn)中學(xué)2025屆高二上數(shù)學(xué)期末綜合測試模擬試題含解析_第2頁
蘭州市重點(diǎn)中學(xué)2025屆高二上數(shù)學(xué)期末綜合測試模擬試題含解析_第3頁
蘭州市重點(diǎn)中學(xué)2025屆高二上數(shù)學(xué)期末綜合測試模擬試題含解析_第4頁
蘭州市重點(diǎn)中學(xué)2025屆高二上數(shù)學(xué)期末綜合測試模擬試題含解析_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

蘭州市重點(diǎn)中學(xué)2025屆高二上數(shù)學(xué)期末綜合測試模擬試題注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知橢圓與雙曲線有相同的焦點(diǎn)、,橢圓的離心率為,雙曲線的離心率為,點(diǎn)P為橢圓與雙曲線的交點(diǎn),且,則當(dāng)取最大值時的值為()A. B.C. D.2.設(shè)函數(shù)在上可導(dǎo),則等于()A. B.C. D.以上都不對3.設(shè),則“”是“”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分又不必要條件4.設(shè)為可導(dǎo)函數(shù),且滿足,則曲線在點(diǎn)處的切線的斜率是A. B.C. D.5.已知數(shù)列滿足,則滿足的的最大取值為()A.6 B.7C.8 D.96.在中,角所對的邊分別為,,,則外接圓的面積是()A. B.C. D.7.《萊因德紙草書》是世界上最古老的數(shù)學(xué)著作之一,書中有一道這樣的類似問題:把150個完全相同的面包分給5個人,使每個人所得面包數(shù)成等差數(shù)列,且使較大的三份面包數(shù)之和的是較小的兩份之和,則最大的那份面包數(shù)為()A.30 B.40C.50 D.608.已知,則方程與在同一坐標(biāo)系內(nèi)對應(yīng)的圖形編號可能是()A.①④ B.②③C.①② D.③④9.已知空間向量,,則()A. B.C. D.10.為了更好地解決就業(yè)問題,國家在2020年提出了“地攤經(jīng)濟(jì)”為響應(yīng)國家號召,有不少地區(qū)出臺了相關(guān)政策去鼓勵“地攤經(jīng)濟(jì)”.某攤主2020年4月初向銀行借了免息貸款8000元,用于進(jìn)貨,因質(zhì)優(yōu)價廉,供不應(yīng)求,據(jù)測算:每月獲得的利潤是該月初投入資金的20%,每月底扣除生活費(fèi)800元,余款作為資金全部用于下月再進(jìn)貨,如此繼續(xù),預(yù)計到2021年3月底該攤主的年所得收入為()(取,)A.24000元 B.26000元C.30000元 D.32000元11.函數(shù)f(x)=xex的單調(diào)增區(qū)間為()A.(-∞,-1) B.(-∞,e)C.(e,+∞) D.(-1,+∞)12.拋物線y2=4x的焦點(diǎn)坐標(biāo)是A.(0,2) B.(0,1)C.(2,0) D.(1,0)二、填空題:本題共4小題,每小題5分,共20分。13.已知數(shù)列滿足,則=________.14.已知雙曲線的焦點(diǎn),過F且斜率為1的直線與雙曲線有且只有一個交點(diǎn),則雙曲線的方程為_________15.若、是雙曲線的左右焦點(diǎn),過的直線與雙曲線的左右兩支分別交于,兩點(diǎn).若為等邊三角形,則雙曲線的離心率為________.16.已知平面向量均為非零向量,且滿足,記向量在向量上投影向量為,則k=______.(用數(shù)字作答)三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)設(shè)F為橢圓的右焦點(diǎn),過點(diǎn)的直線與橢圓C交于兩點(diǎn).(1)若點(diǎn)B為橢圓C的上頂點(diǎn),求直線的方程;(2)設(shè)直線的斜率分別為,,求證:為定值.18.(12分)如圖,漁船甲位于島嶼A的南偏西60°方向的B處,且與島嶼A相距12海里,漁船乙以10海里/小時的速度從島嶼A出發(fā)沿正北方向航行,若漁船甲同時從B處出發(fā)沿北偏東α的方向追趕漁船乙,剛好用2小時追上.(1)求漁船甲的速度;(2)求的值.19.(12分)已知數(shù)列的前n項和為,,,其中.(1)記,求證:是等比數(shù)列;(2)設(shè),數(shù)列的前n項和為,求證:.20.(12分)在中,,,為邊上一點(diǎn),且(1)求;(2)若,求21.(12分)在等差數(shù)列中,,.(1)求數(shù)列通項公式;(2)若,求數(shù)列的前項和.22.(10分)已知分別是橢圓的左、右焦點(diǎn),點(diǎn)是橢圓上的一點(diǎn),且的面積為1.(1)求橢圓的短軸長;(2)過原點(diǎn)的直線與橢圓交于兩點(diǎn),點(diǎn)是橢圓上的一點(diǎn),若為等邊三角形,求的取值范圍.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】由橢圓的定義及雙曲線的定義結(jié)合余弦定理可得,,的關(guān)系,由此可得,再利用重要不等式求最值,并求此時的的值.【詳解】設(shè)為第一象限的交點(diǎn),、,則、,解得、,在中,由余弦定理得:,∴,∴,∴,∴,∴,,即,當(dāng)且僅當(dāng),即,時等號成立,此時故選:D2、C【解析】根據(jù)目標(biāo)式,結(jié)合導(dǎo)數(shù)的定義即可得結(jié)果.【詳解】.故選:C3、A【解析】由三角函數(shù)的單調(diào)性直接判斷是否能推出,反過來判斷時,是否能推出.【詳解】當(dāng)時,利用正弦函數(shù)的單調(diào)性知;當(dāng)時,或.綜上可知“”是“”的充分不必要條件.故選:A【點(diǎn)睛】本題考查判斷充分必要條件,三角函數(shù)性質(zhì),意在考查基本判斷方法,屬于基礎(chǔ)題型.4、D【解析】由題,為可導(dǎo)函數(shù),,即曲線在點(diǎn)處的切線的斜率是,選D【點(diǎn)睛】本題考查導(dǎo)數(shù)的定義,切線的斜率,以及極限的運(yùn)算,本題解題的關(guān)鍵是對所給的極限式進(jìn)行整理,得到符合導(dǎo)數(shù)定義的形式5、B【解析】首先地推公式變形,得,,求得數(shù)列的通項公式后,再解不等式.【詳解】因為,兩邊取倒數(shù),得,整理為:,,所以數(shù)列是首項為1,公差為4的等差數(shù)列,,,因為,即,得,解得:,,所以的最大值是7.故選:B6、B【解析】利用余弦定理可得,然后利用正弦定理可得,即求.【詳解】因為,所以,由余弦定理得,,所以,設(shè)外接圓的半徑為,由正統(tǒng)定理得,,所以,所以外接圓的面積是.故選:B.7、C【解析】根據(jù)題意得到遞增等差數(shù)列中,,,從而化成基本量,進(jìn)行計算,再計算出,得到答案.【詳解】根據(jù)題意,設(shè)遞增等差數(shù)列,首項為,公差,則所以解得所以最大項.故選:C8、B【解析】結(jié)合橢圓、雙曲線、拋物線的圖像,分別對①②③④分析m、n的正負(fù),即可得到答案.【詳解】對于①:由雙曲線的圖像可知:;由拋物線的圖像可知:同號,矛盾.故①錯誤;對于②:由雙曲線的圖像可知:;由拋物線的圖像可知:異號,符合要求.故②成立;對于③:由橢圓的圖像可知:;由拋物線的圖像可知:同號,且拋物線的焦點(diǎn)在x軸上,符合要求.故③成立;對于④:由橢圓的圖像可知:;由拋物線的圖像可知:同號,且拋物線的焦點(diǎn)在x軸上,矛盾.故④錯誤;故選:B9、C【解析】直接利用向量的坐標(biāo)運(yùn)算法則求解即可【詳解】因為,,所以,故選:C10、D【解析】設(shè),從4月份起每月底用于下月進(jìn)借貨的資金依次記為,由題意得出的遞推關(guān)系,變形構(gòu)造出等比數(shù)列,由得其通項公式后可得結(jié)論【詳解】設(shè),從4月份起每月底用于下月進(jìn)借貨的資金依次記為,,、同理可得,所以,而,所以數(shù)列是等比數(shù)列,公比為,所以,,總利潤為故選:D【點(diǎn)睛】思路點(diǎn)睛:本題考查數(shù)列的實際應(yīng)用.解題方法是用數(shù)列表示月初進(jìn)貨款,得出遞推關(guān)系,然后構(gòu)造等比數(shù)列求解11、D【解析】求出,令可得答案.【詳解】由已知得,令,得,故函數(shù)f(x)=xex的單調(diào)增區(qū)間為(-1,+∞).故選:D.12、D【解析】的焦點(diǎn)坐標(biāo)為,故選D.【考點(diǎn)】拋物線的性質(zhì)【名師點(diǎn)睛】本題考查拋物線的定義.解析幾何是中學(xué)數(shù)學(xué)的一個重要分支,圓錐曲線是解析幾何的重要內(nèi)容,它們的定義、標(biāo)準(zhǔn)方程、簡單幾何性質(zhì)是我們要重點(diǎn)掌握的內(nèi)容,一定要熟記掌握二、填空題:本題共4小題,每小題5分,共20分。13、4【解析】根據(jù)對數(shù)的運(yùn)算性質(zhì)得,可得,即數(shù)列是以2為公比的等比數(shù)列,代入等比數(shù)列的通項公式化簡可得值.【詳解】因為,所以,即數(shù)列是以2為公比的等比數(shù)列,所以.故答案為:4.【點(diǎn)睛】本題考查等比數(shù)列的定義和通項公式以及對數(shù)的運(yùn)算性質(zhì),熟練運(yùn)用相應(yīng)的公式即可,屬于基礎(chǔ)題.14、【解析】根據(jù)直線與雙曲線只有一個交點(diǎn)可知直線與雙曲線平行,由漸近線斜率可列出的齊次方程,利用齊次方程求解.【詳解】直線與雙曲線有且只有一個交點(diǎn),且焦點(diǎn),直線與雙曲線漸近線平行,,即,,即,.則雙曲線的方程為故答案為:15、【解析】根據(jù)雙曲線的定義算出△AF1F2中,|AF1|=2a,|AF2|=4a,由△ABF2是等邊三角形得∠F1AF2=120°,利用余弦定理算出c=a,結(jié)合雙曲線離心率公式即可算出雙曲線C的離心率.【詳解】因為△ABF2為等邊三角形,可知,A為雙曲線上一點(diǎn),,B為雙曲線上一點(diǎn),則,即,∴由,則,已知,在△F1AF2中應(yīng)用余弦定理得:,得c2=7a2,則e2=7?e=故答案為:【點(diǎn)睛】方法點(diǎn)睛:求雙曲線的離心率,常常不能經(jīng)過條件直接得到a,c的值,這時可將或視為一個整體,把關(guān)系式轉(zhuǎn)化為關(guān)于或的方程,從而得到離心率的值.16、##1.5【解析】由兩邊平方可得,,,設(shè),向量是以向量為鄰邊的平行四邊形、有共同起點(diǎn)的對角線,,由余弦定理可得,向量在向量上投影向量為,化簡可得答案.【詳解】因為,所以,,兩邊平方整理得,,兩邊平方整理得,即,可得,,設(shè),所以向量是以向量為鄰邊的平行四邊形、有共同起點(diǎn)的對角線,如圖,即,因為,,平行四邊形即為的菱形,所以,由余弦定理可得,可得,,向量在向量上投影向量為,即.故答案為:.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)證明見解析.【解析】(1)求出的直線方程,結(jié)合橢圓方程可求的坐標(biāo),從而可求的直線方程;(2)設(shè),直線(或),則可用兩點(diǎn)的坐標(biāo)表示或,聯(lián)立直線的方程和橢圓的方程,消元后利用韋達(dá)定理可化簡前者從而得到要證明的結(jié)論【詳解】(1)若B為橢圓的上頂點(diǎn),則.又過點(diǎn),故直線由可得,解得即點(diǎn),又,故直線;(2)設(shè),方法一:設(shè)直線,代入橢圓方程可得:所以,故,又均不為0,故,即為定值方法二:設(shè)直線,代入橢圓方程可得:所以所以,即,所以,即為定值方法三:設(shè)直線,代入橢圓方程可得:所以,所以所以,把代入得方法四:設(shè)直線,代入橢圓的方程可得,則所以.因為,代入得.【點(diǎn)睛】思路點(diǎn)睛:直線與圓錐曲線的位置關(guān)系中的定點(diǎn)、定值、最值問題,一般可通過聯(lián)立方程組并消元得到關(guān)于或的一元二次方程,再把要求解的目標(biāo)代數(shù)式化為關(guān)于兩個的交點(diǎn)橫坐標(biāo)或縱坐標(biāo)的關(guān)系式,該關(guān)系中含有或,最后利用韋達(dá)定理把關(guān)系式轉(zhuǎn)化為若干變量的方程(或函數(shù)),從而可求定點(diǎn)、定值、最值問題.18、(1)14海里小時;(2).【解析】(1)由題意知,,,.在△中,利用余弦定理求出,進(jìn)而求出漁船甲的速度.(2)在△中,,,,,由正弦定理,即可解出的值.【小問1詳解】(1)依題意,,,,.在△中,由余弦定理,得.解得.故漁船甲的速度為海里小時.即漁船甲的速度為14海里小時.【小問2詳解】在△中,因為,,,,由正弦定理,得,即.值為.19、(1)證明見解析;(2)證明見解析.【解析】(1)應(yīng)用的關(guān)系,結(jié)合構(gòu)造法可得,根據(jù)已知條件及等比數(shù)列的定義即可證結(jié)論.(2)由(1)得,再應(yīng)用錯位相減法求,即可證結(jié)論.【小問1詳解】證明:對任意的,,,時,,解得,時,因為,,兩式相減可得:,即有,∴,又,則,因為,,所以,對任意的,,所以,因此,是首項和公比均為3的等比數(shù)列【小問2詳解】由(1)得:,則,,,兩式相減得:,化簡可得:,又,∴.20、(1);(2)【解析】(1)在△中,由余弦定理,即可求.(2)在中,由正弦定理,即可求.【詳解】(1)在△中,,,,由余弦定理得:,∴(2)在中,,,,由正弦定理得:,即,∴21、(1);(2).【解析】(1)利用等差數(shù)列的基本量,根據(jù)題意,列出方程,即可求得公差以及通項公式;(2)根據(jù)(1)中所求,結(jié)合等差數(shù)列的前項和的公式,求得,以及,再利用等比數(shù)列的前項和公式求得.【小問1詳解】因為,所以,故可得,所以.【小問2詳解】因為,所以.于是,令,則.顯然數(shù)列是等比數(shù)列,且,公比,所以數(shù)列的前n項和.22、(1)2(2)【解析】(1)根據(jù)題意表示出的面積,即可求得結(jié)果;(2)分類討論直線

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論