版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
名校聯(lián)盟2025屆高二數(shù)學(xué)第一學(xué)期期末教學(xué)質(zhì)量檢測(cè)試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請(qǐng)按照題號(hào)順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無(wú)效;在草稿紙、試題卷上答題無(wú)效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.直線的一個(gè)方向向量為,則它的斜率為()A. B.C. D.2.已知函數(shù)在上是增函數(shù),則實(shí)數(shù)的取值范圍是()A. B.C. D.3.酒駕是嚴(yán)重危害交通安全的違法行為.根據(jù)國(guó)家有關(guān)規(guī)定:100血液中酒精含量在20~80之間為酒后駕車,80及以上為醉酒駕車.假設(shè)某駕駛員喝了一定量的酒后,其血液中的酒精含量上升到了1.2,且在停止喝酒以后,他血液中的酒精含量會(huì)以每小時(shí)20%的速度減少,若他想要在不違法的情況下駕駛汽車,則至少需經(jīng)過(guò)的小時(shí)數(shù)約為()(參考數(shù)據(jù):,)A.6 B.7C.8 D.94.已知函數(shù),則的值為()A. B.C.0 D.15.在等差數(shù)列中,若,且前n項(xiàng)和有最大值,則使得的最大值n為()A.15 B.16C.17. D.186.袋子中有四個(gè)小球,分別寫有“文、明、中、國(guó)”四個(gè)字,有放回地從中任取一個(gè)小球,直到“中”“國(guó)”兩個(gè)字都取到就停止,用隨機(jī)模擬的方法估計(jì)恰好在第三次停止的概率.利用電腦隨機(jī)產(chǎn)生0到3之間取整數(shù)值的隨機(jī)數(shù),分別用0,1,2,3代表“文、明、中、國(guó)”這四個(gè)字,以每三個(gè)隨機(jī)數(shù)為一組,表示取球三次的結(jié)果,經(jīng)隨機(jī)模擬產(chǎn)生了以下18組隨機(jī)數(shù):由此可以估計(jì),恰好第三次就停止的概率為()A. B.C. D.7.已知直線交圓于A,B兩點(diǎn),若點(diǎn)滿足,則直線l被圓C截得線段的長(zhǎng)是()A.3 B.2C. D.48.設(shè)數(shù)列的前項(xiàng)和為,當(dāng)時(shí),,,成等差數(shù)列,若,且,則的最大值為()A. B.C. D.9.在公比為的等比數(shù)列中,前項(xiàng)和,則()A.1 B.2C.3 D.410.我國(guó)古代數(shù)學(xué)名著《算法統(tǒng)宗》中說(shuō):“九百九十六斤棉,贈(zèng)分八子做盤纏,次第每人多十七,要將第八數(shù)來(lái)言,務(wù)要分明依次第,孝和休惹外人傳.”意為:“996斤棉花,分別贈(zèng)送給8個(gè)子女做旅費(fèi),從第一個(gè)孩子開始,以后每人依次多17斤,直到第8個(gè)孩子為止.分配時(shí)一定要依照次序分,要順從父母,兄弟間和氣,不要引得外人說(shuō)閑話.”在這個(gè)問(wèn)題中,第5個(gè)孩子分到棉花為()A.133斤 B.116斤C.99斤 D.65斤11.在平面區(qū)域內(nèi)隨機(jī)投入一點(diǎn)P,則點(diǎn)P的坐標(biāo)滿足不等式的概率是()A. B.C. D.12.已知O為坐標(biāo)原點(diǎn),=(1,2,3),=(2,1,2),=(1,1,2),點(diǎn)Q在直線OP上運(yùn)動(dòng),則當(dāng)取得最小值時(shí),點(diǎn)Q的坐標(biāo)為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知拋物線的焦點(diǎn)為F,過(guò)F的直線l交拋物線C于AB兩點(diǎn),且,則p的值為______14.已知數(shù)列的前n項(xiàng)和為,則取得最大值時(shí)n的值為__________________15.歷史上第一個(gè)研究圓錐曲線的是梅納庫(kù)莫斯(公元前375年—325年),大約100年后,阿波羅尼奧更詳盡、系統(tǒng)地研究了圓錐曲線,并且他還進(jìn)一步研究了這些圓錐曲線的光學(xué)性質(zhì),比如:從拋物線的焦點(diǎn)發(fā)出的光線或聲波在經(jīng)過(guò)拋物線反射后,反射光線平行于拋物線的對(duì)稱軸:反之,平行于拋物線對(duì)稱軸的光線,經(jīng)拋物線反射后,反射光線經(jīng)過(guò)拋物線的焦點(diǎn).已知拋物線,經(jīng)過(guò)點(diǎn)一束平行于C對(duì)稱軸的光線,經(jīng)C上點(diǎn)P反射后交C于點(diǎn)Q,則PQ的長(zhǎng)度為______.16.已知為橢圓上的一點(diǎn),,分別為圓和圓上的點(diǎn),則的最小值為______三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)如圖,PA⊥平面ABCD,四邊形ABCD是正方形,PA=AD=2,M、N分別是AB、PC的中點(diǎn)(1)求證:平面MND⊥平面PCD;(2)求點(diǎn)P到平面MND的距離18.(12分)已知拋物線的焦點(diǎn)為F,點(diǎn)在拋物線上.(1)求拋物線的標(biāo)準(zhǔn)方程;(2)過(guò)點(diǎn)的直線交拋物錢C于A,B兩點(diǎn),O為坐標(biāo)原點(diǎn),記直線OA,OB的斜率分別,,求證:為定值.19.(12分)已知橢圓的長(zhǎng)軸長(zhǎng)是6,離心率是.(1)求橢圓E的標(biāo)準(zhǔn)方程;(2)設(shè)O為坐標(biāo)原點(diǎn),過(guò)點(diǎn)的直線l與橢圓E交于A,B兩點(diǎn),判斷是否存在常數(shù),使得為定值?若存在,求出的值;若不存在,請(qǐng)說(shuō)明理由.20.(12分)如圖,在平面直角坐標(biāo)系中,點(diǎn),,(1)求直線BC的方程;(2)記的外接圓為圓M,若直線OC被圓M截得的弦長(zhǎng)為4,求點(diǎn)C的坐標(biāo)21.(12分)城南公園種植了4棵棕櫚樹,各棵棕櫚樹成活與否是相互獨(dú)立的,成活率為p,設(shè)為成活棕櫚樹的株數(shù),數(shù)學(xué)期望.(1)求p的值并寫出的分布列;(2)若有2棵或2棵以上的棕櫚樹未成活,則需要補(bǔ)種,求需要補(bǔ)種棕櫚樹的概率.22.(10分)已知拋物線的準(zhǔn)線方程是,直線與拋物線相交于M、N兩點(diǎn)(1)求拋物線的方程;(2)求弦長(zhǎng);(3)設(shè)O為坐標(biāo)原點(diǎn),證明:
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】根據(jù)的方向向量求得斜率.【詳解】且是直線的方向向量,.故選:A2、A【解析】由題意可知,對(duì)任意的恒成立,可得出對(duì)任意的恒成立,利用基本不等式可求得實(shí)數(shù)的取值范圍.【詳解】因?yàn)?,則,由題意可知,對(duì)任意的恒成立,所以,對(duì)任意的恒成立,由基本不等式可得,當(dāng)且僅當(dāng)時(shí),等號(hào)成立,所以,.故選:A.3、C【解析】根據(jù)題意列出不等式,利用指對(duì)數(shù)冪的互化和對(duì)數(shù)的運(yùn)算公式即可解出不等式.【詳解】設(shè)該駕駛員至少需經(jīng)過(guò)x個(gè)小時(shí)才能駕駛汽車,則,所以,則,所以該駕駛員至少需經(jīng)過(guò)約8個(gè)小時(shí)才能駕駛汽車.故選:C4、B【解析】對(duì)函數(shù)求導(dǎo),然后將代入導(dǎo)數(shù)中可得結(jié)果.【詳解】,則,則,故選:B5、A【解析】由題可得,則,可判斷,,即可得出結(jié)果.【詳解】前n項(xiàng)和有最大值,,,,,,,使得的最大值n為15.故選:A.【點(diǎn)睛】本題考查等差數(shù)列前n項(xiàng)和的有關(guān)判斷,解題的關(guān)鍵是得出.6、A【解析】利用古典概型的概率公式求解.【詳解】因?yàn)殡S機(jī)模擬產(chǎn)生了以下18組隨機(jī)數(shù):,其中恰好第三次就停止包含的基本事件有:023,123,132共3個(gè),所以由此可以估計(jì),恰好第三次就停止的概率為,故選:A7、B【解析】由題設(shè)知為圓的圓心且A、B在圓上,根據(jù)已知及向量數(shù)量積的定義求的大小,進(jìn)而判斷△的形狀,即可得直線l被圓C截得線段的長(zhǎng).【詳解】∵點(diǎn)為圓的圓心且A、B在圓上,又,∴,∴,又,∴,故△為等邊三角形,∴直線l被圓C截得線段的長(zhǎng)是2故選:B8、A【解析】根據(jù)等差中項(xiàng)寫出式子,由遞推式及求和公式寫出和,進(jìn)而得出結(jié)果.【詳解】解:由,,成等差數(shù)列,可得,則,,,可得數(shù)列中,每隔兩項(xiàng)求和是首項(xiàng)為,公差為的等差數(shù)列.則,,則的最大值可能為.由,,可得.因?yàn)?,,,即,所以,則,當(dāng)且僅當(dāng)時(shí),,符合題意,故的最大值為.故選:A.【點(diǎn)睛】本題考查等差數(shù)列的性質(zhì)和遞推式的應(yīng)用,考查分析問(wèn)題能力,屬于難題.9、C【解析】先利用和的關(guān)系求出和,再求其公比.【詳解】由,得,,所以,,則.故選:C.10、A【解析】根據(jù)等差數(shù)列的前n項(xiàng)和公式、等差數(shù)列的通項(xiàng)公式進(jìn)行求解即可.【詳解】依題意得,八個(gè)子女所得棉花斤數(shù)依次構(gòu)成等差數(shù)列,設(shè)該等差數(shù)列為,公差為d,前n項(xiàng)和為,第一個(gè)孩子所得棉花斤數(shù)為,則由題意得,,解得,故選:A11、A【解析】根據(jù)題意作出圖形,進(jìn)而根據(jù)幾何概型求概率的方法求得答案.【詳解】根據(jù)題意作出示意圖,如圖所示:于,所求概率.故選:A.12、C【解析】設(shè),用表示出,求得的表達(dá)式,結(jié)合二次函數(shù)的性質(zhì)求得當(dāng)時(shí),取得最小值,從而求得點(diǎn)的坐標(biāo).【詳解】設(shè),則=-=-λ=(1-λ,2-λ,3-2λ),=-=-λ=(2-λ,1-λ,2-2λ),所以=(1-λ,2-λ,3-2λ)·(2-λ,1-λ,2-2λ)=2(3λ2-8λ+5)=.所以當(dāng)λ=時(shí),取得最小值,此時(shí)==,即點(diǎn)Q的坐標(biāo)為.故選:C二、填空題:本題共4小題,每小題5分,共20分。13、3【解析】根據(jù)拋物線焦點(diǎn)弦性質(zhì)求解,或聯(lián)立l與拋物線方程,表示出,求其最值即可.【詳解】已知,設(shè),,,則,∵,所以,,∴,當(dāng)且僅當(dāng)m=0時(shí),取..故答案為:3.14、①.13②.##3.4【解析】由題可得利用函數(shù)的單調(diào)性可得取得最大值時(shí)n的值,然后利用,即求.【詳解】∵,∴當(dāng)時(shí),單調(diào)遞減且,當(dāng)時(shí),單調(diào)遞減且,∴時(shí),取得最大值,∴.故答案為:13;.15、####【解析】根據(jù)題意,求得點(diǎn)以及拋物線焦點(diǎn)的坐標(biāo),即可求得所在直線方程,聯(lián)立其與拋物線方程,求得點(diǎn)的坐標(biāo),即可求得.【詳解】因?yàn)榻?jīng)過(guò)點(diǎn)一束平行于C對(duì)稱軸的光線交拋物線于點(diǎn),故對(duì),令,則可得,也即的坐標(biāo)為,又拋物線的焦點(diǎn)的坐標(biāo)為,故可得直線方程為,聯(lián)立拋物線方程可得:,,解得或,將代入,可得,即的坐標(biāo)為,則.故答案為:.16、8【解析】根據(jù)橢圓的定義、點(diǎn)到圓上距離的最小值,即可得到答案;【詳解】設(shè)為橢圓的左右焦點(diǎn),則,等號(hào)成立,當(dāng)共線,共線,的最小值為,故答案為:三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)見解析;(2)【解析】(1)作出如圖所示空間直角坐標(biāo)系,根據(jù)題中數(shù)據(jù)可得、、的坐標(biāo),利用垂直向量數(shù)量積為零的方法算出平面、平面的法向量分別為,,和,1,,算出,可得,從而得出平面平面;(2)由(1)中求出的平面法向量,,與向量,2,,利用點(diǎn)到平面的距離公式加以計(jì)算即可得到點(diǎn)到平面的距離【詳解】(1)證明:平面,,、、兩兩互相垂直,如圖所示,分別以、、所在直線為軸、軸和軸建立空間直角坐標(biāo)系,則,0,,,0,,,2,,,2,,,0,,,0,,,1,,,1,,,1,,,2,設(shè),,是平面的一個(gè)法向量,可得,取,得,,,,是平面的一個(gè)法向量,同理可得,1,是平面的一個(gè)法向量,,,即平面的法向量與平面的法向量互相垂直,可得平面平面;(2)解:由(1)得,,是平面的一個(gè)法向量,,2,,得,點(diǎn)到平面的距離18、(1)(2)證明見解析【解析】(1)將點(diǎn)代入拋物線方程即可求解;(2)當(dāng)直線AB的斜率存在時(shí),設(shè)直線AB的方程為,,將直線方程與拋物線方程聯(lián)立利用韋達(dá)定理即可求出的值;當(dāng)直線AB的斜率不存在時(shí),由過(guò)點(diǎn)即可求出點(diǎn)和點(diǎn)的坐標(biāo),即可求出的值.【小問(wèn)1詳解】將點(diǎn)代入得,,∴拋物線的標(biāo)準(zhǔn)方程為.【小問(wèn)2詳解】當(dāng)直線AB斜率存在時(shí),設(shè)直線AB的方程為,,將聯(lián)立得,,由韋達(dá)定理得:,,,當(dāng)直線AB的斜率不存在時(shí),由直線過(guò)點(diǎn),則,,,,綜上所述可知,為定值為.19、(1);(2)存在,.【解析】(1)根據(jù)給定條件求出橢圓長(zhǎng)短半軸長(zhǎng)即可代入計(jì)算作答.(2)當(dāng)直線l的斜率存在時(shí),設(shè)出直線l的方程,與橢圓E的方程聯(lián)立,利用韋達(dá)定理、向量數(shù)量積運(yùn)算,推理計(jì)算作答.【小問(wèn)1詳解】依題意,,半焦距為c,則離心率,即,有,所以橢圓E的標(biāo)準(zhǔn)方程為:.【小問(wèn)2詳解】當(dāng)直線l的斜率存在時(shí),設(shè)直線l的方程為,由消去y并整理得:,設(shè),則,,,,,,要使為定值,必有,解得,此時(shí),當(dāng)直線l的斜率不存在時(shí),由對(duì)稱性不妨令,,,當(dāng)時(shí),,即當(dāng)時(shí),過(guò)點(diǎn)的任意直線l與橢圓E交于A,B兩點(diǎn),恒有,所以存在滿足條件.【點(diǎn)睛】方法點(diǎn)睛:求定值問(wèn)題常見的方法:(1)從特殊入手,求出定值,再證明這個(gè)值與變量無(wú)關(guān)(2)直接推理、計(jì)算,并在計(jì)算推理的過(guò)程中消去變量,從而得到定值20、(1);(2).【解析】(1)延長(zhǎng)CB交x軸于點(diǎn)N,根據(jù)給定條件求出即可計(jì)算作答.(2)利用待定系數(shù)法求出圓M的方程,再由給定弦長(zhǎng)確定C點(diǎn)位置,推理計(jì)算得解.【小問(wèn)1詳解】延長(zhǎng)CB交x軸于點(diǎn)N,如圖,因,則,又,則有,又,于是得,則直線BC的傾斜角為120°,直線BC的斜率,因此,,即所以直線BC的方程為.【小問(wèn)2詳解】依題意,設(shè)圓M的方程為,由(1)得:,解得,于是得圓M的方程為,即,圓心,半徑,因直線OC被圓M所截的弦長(zhǎng)為4,則直線OC過(guò)圓心,其方程為,由解得,即,所以點(diǎn)C的坐標(biāo)是.21、(1),分布列見解析;(2).【解析】(1)根據(jù)二項(xiàng)分布知識(shí)即可求解;(2)將補(bǔ)種棕櫚樹的概率轉(zhuǎn)化為成活的概率,結(jié)合概率加法公
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025郵政物流解決方案供給分析投資布局評(píng)估報(bào)告
- 2025廣東廣州市衛(wèi)生健康委員會(huì)直屬事業(yè)單位廣州市第十二人民醫(yī)院第一次招聘26人筆試考試備考題庫(kù)及答案解析
- 海綿鈦還原蒸餾工崗前崗位實(shí)操考核試卷含答案
- 鋼琴共鳴盤制作工安全規(guī)程模擬考核試卷含答案
- 2025郵政快遞服務(wù)行業(yè)消費(fèi)需求現(xiàn)場(chǎng)評(píng)估與資金發(fā)展策劃詳細(xì)報(bào)告
- 2025郵政快遞產(chǎn)業(yè)物流體系建設(shè)及創(chuàng)新發(fā)展與經(jīng)濟(jì)增長(zhǎng)研究報(bào)告
- 2025郵政儲(chǔ)蓄金融服務(wù)機(jī)構(gòu)轉(zhuǎn)型與發(fā)展路線圖研究報(bào)告
- 2025造紙行業(yè)環(huán)保問(wèn)題分析及產(chǎn)業(yè)發(fā)展規(guī)劃評(píng)估研究報(bào)告
- 2025造紙行業(yè)智能制造分析及投資擴(kuò)展策略研究報(bào)告
- 基因工程藥品生產(chǎn)工安全生產(chǎn)知識(shí)強(qiáng)化考核試卷含答案
- 2025民生銀行總行資產(chǎn)經(jīng)營(yíng)管理部社會(huì)招聘筆試題庫(kù)帶答案解析
- 公益性公墓建設(shè)項(xiàng)目竣工驗(yàn)收?qǐng)?bào)告
- 2025黑龍江大興安嶺地區(qū)韓家園林業(yè)局工勤崗位人員招聘40人備考考點(diǎn)試題及答案解析
- 2025年陜煤澄合礦業(yè)有限公司招聘(570人)筆試備考題庫(kù)附答案解析
- 2025年保密觀知識(shí)競(jìng)賽題庫(kù)(含參考答案)
- 2025山西朔州市兩級(jí)法院司法輔助人員招聘16人筆試考試備考試題及答案解析
- 危險(xiǎn)化學(xué)品應(yīng)急救援員崗位招聘考試試卷及答案
- 物業(yè)餐飲安全協(xié)議書
- 孤獨(dú)癥兒童發(fā)展評(píng)估表
- 梁截面加高加固施工方案
- 骨干教師績(jī)效考核制度實(shí)施細(xì)則
評(píng)論
0/150
提交評(píng)論