2025屆重慶市一中高二上數(shù)學期末經典試題含解析_第1頁
2025屆重慶市一中高二上數(shù)學期末經典試題含解析_第2頁
2025屆重慶市一中高二上數(shù)學期末經典試題含解析_第3頁
2025屆重慶市一中高二上數(shù)學期末經典試題含解析_第4頁
2025屆重慶市一中高二上數(shù)學期末經典試題含解析_第5頁
已閱讀5頁,還剩10頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2025屆重慶市一中高二上數(shù)學期末經典試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.拋物線焦點坐標為()A. B.C. D.2.中,三邊長之比為,則為()A.銳角三角形 B.直角三角形C.鈍角三角形 D.不存在這樣的三角形3.已知直線在x軸和y軸上的截距相等,則a的值是()A或1 B.或C. D.14.已知,條件,條件,則是的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件5.已知動點的坐標滿足方程,則的軌跡方程是()A. B.C. D.6.若雙曲線的漸近線方程為,則的值為()A.2 B.3C.4 D.67.某校高二年級統(tǒng)計了參加課外興趣小組的學生人數(shù),每人只參加一類,數(shù)據(jù)如下表:學科類別文學新聞經濟政治人數(shù)400300100200若從參加課外興趣小組的學生中采用分層抽樣的方法抽取50名參加學習需求的問卷調查,則從文學、新聞、經濟、政治四類興趣小組中抽取的學生人數(shù)分別為()A.15,20,10,5 B.15,20,5,10C.20,15,10,5 D.20,15,5,108.函數(shù)的定義域為,,對任意,,則的解集為()A. B.C. D.9.已知,為橢圓上關于短軸對稱的兩點,、分別為橢圓的上、下頂點,設,、分別為直線,的斜率,則的最小值為()A. B.C. D.10.曲線y=x3+11在點P(1,12)處的切線與y軸交點的縱坐標是()A.﹣9 B.﹣3C.9 D.1511.已知直線和互相平行,則實數(shù)()A. B.C.或 D.或12.如果,,…,是拋物線C:上的點,它們的橫坐標依次為,,…,,點F是拋物線C的焦點.若=10,=10+n,則p等于()A.2 B.C. D.4二、填空題:本題共4小題,每小題5分,共20分。13.半徑為的球的體積為_________14.若點O和點F分別為橢圓+=1的中心和左焦點,點P為橢圓上的任意一點,則·的最大值為________.15.已知某農場某植物高度,且,如果這個農場有這種植物10000棵,試估計該農場這種植物高度在區(qū)間上的棵數(shù)為______.參考數(shù)據(jù):若,則,,.16.設a為實數(shù),若直線與直線平行,則a值為______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知直線l的斜率為-2,且與兩坐標軸的正半軸圍成三角形的面積等于1.圓C的圓心在第四象限,直線l經過圓心,圓C被x軸截得的弦長為4.若直線x-2y-1=0與圓C相切,求圓C的方程18.(12分)已知點為橢圓C的右焦點,P為橢圓上一點,且(O為坐標原點),.(1)求橢圓C的標準方程;(2)經過點的直線l與橢圓C交于A,B兩點,求弦的取值范圍.19.(12分)如圖,在三棱錐中,,,記二面角的平面角為(1)若,,求三棱錐的體積;(2)若M為BC的中點,求直線AD與EM所成角的取值范圍20.(12分)茶樹根據(jù)其茶葉產量可分為優(yōu)質茶樹和非優(yōu)質茶樹,某茶葉種植研究小組選取了甲,乙兩塊試驗田來檢驗某種茶樹在不同的環(huán)境條件下的生長情況.研究人員將100株該種茶樹幼苗在甲,乙兩塊試驗田中進行種植,成熟后統(tǒng)計每株茶樹的茶葉產量,將所得數(shù)據(jù)整理如下表所示:優(yōu)質茶樹非優(yōu)質茶樹甲試驗田a25乙試驗田10b已知甲試驗田優(yōu)質茶樹的比例為50%(1)求表中a,b的值;(2)根據(jù)表中數(shù)據(jù)判斷,是否有99%的把握認為甲,乙兩塊試驗田的環(huán)境差異對茶樹的生長有影響?附:,其中.0.100.050.01k2.7063.8416.63521.(12分)已知函數(shù)(1)求函數(shù)的單調區(qū)間;(2)求函數(shù)在區(qū)間上的值域22.(10分)已知函數(shù).(I)若曲線在點處的切線方程為,求的值;(II)若,求的單調區(qū)間.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】由拋物線方程確定焦點位置,確定焦參數(shù),得焦點坐標【詳解】拋物線的焦點在軸正半軸,,,,因此焦點坐標為故選:C2、C【解析】利用余弦定理可求得最大角的余弦值小于零,由此可知最大角為鈍角.【詳解】設三邊分別為,,,中的最大角為,,為鈍角,為鈍角三角形.故選:C.3、A【解析】分截距都為零和都不為零討論即可.【詳解】當截距都為零時,直線過原點,;當截距不為零時,,.綜上:或.故選:A.4、A【解析】利用“1”的妙用探討命題“若p則q”的真假,取特殊值計算說明“若q則p”的真假即可判斷作答.【詳解】因為,由得:,則,當且僅當,即時取等號,因此,,因,,由,取,則,,即,,所以是的充分不必要條件.故選:A5、C【解析】此方程表示點到點的距離與到點的距離之差為8,而這正好符合雙曲線的定義,點的軌跡是雙曲線的右支,,的軌跡方程是,故選C.6、A【解析】根據(jù)雙曲線方程確定焦點位置,再根據(jù)漸近線方程為求解.【詳解】因為雙曲線所以焦點在x軸上,又因為漸近線方程為,所以,所以.故選:A【點睛】本題主要考查雙曲線的幾何性質,還考查了理解辨析的能力,屬于基礎題.7、D【解析】利用分層抽樣的等比例性質求抽取的樣本中所含各小組的人數(shù).【詳解】根據(jù)分層抽樣的等比例性質知:文學小組抽取人數(shù)為人;新聞小組抽取人數(shù)為人;經濟小組抽取人數(shù)為人;政治小組抽取人數(shù)為人;故選:D.8、B【解析】構造函數(shù),利用導數(shù)判斷出函數(shù)在上的單調性,將不等式轉化為,利用函數(shù)的單調性即可求解.【詳解】依題意可設,所以.所以函數(shù)在上單調遞增,又因為.所以要使,即,只需要,故選B.【點睛】本題考查利用函數(shù)的單調性解不等式,解題的關鍵就是利用導數(shù)不等式的結構構造新函數(shù)來解,考查分析問題和解決問題的能力,屬于中等題.9、A【解析】設出點,的坐標,并表示出兩個斜率、,把代數(shù)式轉化成與點的坐標相關的代數(shù)式,再與橢圓有公共點解決即可.【詳解】橢圓中:,設則,則,,令,則它對應直線由整理得由判別式解得即,則的最小值為故選:A10、C【解析】y′=3x2,則y′|x=1=3,所以曲線在P點處的切線方程為y-12=3(x-1)即y=3x+9,它在y軸上的截距為9.11、C【解析】根據(jù)題意,結合兩直線的平行,得到且,即可求解.【詳解】由題意,直線和互相平行,可得且,即且,解得或.故選:C.12、A【解析】根據(jù)拋物線定義得個等式,相加后,利用已知條件可得結果.【詳解】拋物線C:的準線為,根據(jù)拋物線的定義可知,,,,,所以,所以,所以,所以.故選:A【點睛】關鍵點點睛:利用拋物線的定義解題是解題關鍵,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】根據(jù)球的體積公式求解【詳解】根據(jù)球的體積公式【點睛】球的體積公式14、6【解析】由橢圓方程得到F,O的坐標,設P(x,y)(-2≤x≤2),利用數(shù)量積的坐標運算將·轉化為二次函數(shù)最值求解.【詳解】由橢圓+=1,可得F(-1,0),點O(0,0),設P(x,y)(-2≤x≤2),則·=x2+x+y2=x2+x+3=x2+x+3=(x+2)2+2,-2≤x≤2,當x=2時,·取得最大值6.故答案為:6【點睛】本題主要考查平面向量的數(shù)量積及應用以及橢圓的幾何性質和二次函數(shù)求最值,還考查了運算求解的能力,屬于中檔題.15、1359【解析】由已知求得,則,結合已知求得,乘以10000得答案【詳解】解:由,得,又,,則,估計該農場這種植物高度在區(qū)間,上的棵數(shù)為故答案為:135916、【解析】根據(jù)兩直線平行得到,解方程組即可求出結果.【詳解】由題意可知,解得,故答案為:.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、【解析】先根據(jù)題意設直線方程,由條件求出直線的方程,再根據(jù)條件列出等量關系,求出圓心和半徑,進而求得答案.【詳解】解:設直線l的方程為y=-2x+b(b>0),它與兩坐標軸的正半軸的交點依次為,,因為直線l與兩坐標軸的正半軸所圍成的三角形的面積等于1,所以,解得b=2,所以直線l的方程是,即由題意,可設圓C的圓心為,半徑為r,又因為圓C被x軸截得的弦長等于4,所以①,由于直線與圓相切,所以圓心C到直線的距離②,所以①②聯(lián)立得:,解得:或,又圓心在第四象限,所以,則圓心,,所以圓C方程是.18、(1)(2)【解析】(1)利用橢圓定義求得橢圓的即可解決;(2)經過點的直線l分為斜率不存在和存在兩種情況,分別去求弦,再去求其取值范圍即可.【小問1詳解】由題意得.記左焦點為,,則,,解得.由橢圓定義得:,則,所以橢圓C的方程為:.【小問2詳解】①當直線l的斜率不存在時,.②當直線l的斜率存在時,設斜率為k,則l的方程為.聯(lián)立橢圓與直線的方程(由于點在橢圓內,∴成立),且,,令,則,,,由得,綜上所述,弦的取值范圍為.【點睛】(1)解答直線與橢圓的題目時,時常把兩個曲線的方程聯(lián)立,消去x(或y)建立一元二次方程,然后借助根與系數(shù)的關系,并結合題設條件建立有關參變量的等量關系(2)涉及到直線方程的設法時,務必考慮全面,不要忽略直線斜率為0或不存在等特殊情形19、(1)(2)【解析】(1)作出輔助線,找到二面角的平面角,利用余弦定理求出,求出底面積和高,進而求出三棱錐的體積;(2)利用空間基底表達出,結合第一問結論求出,從而求出答案.【小問1詳解】取AC的中點F,連接FD,F(xiàn)E,由BC=2,則,故DF⊥AC,EF⊥AC,故∠DFE即為二面角的平面角,即,連接DE,作DH⊥FE,因為,所以平面DEF,因為DH平面DEF,所以AC⊥DH,因為,所以DH⊥平面ABC,因為,由勾股定理得:,,又,由勾股定理逆定理可知,AE⊥CE,且∠BAC=,,在△ABC中,由余弦定理得:,解得:或(舍去),則,因為,,所以△DEF為等邊三角形,則,故三棱錐的體積;【小問2詳解】設,則,,由(1)知:,,取為空間中的一組基底,則,由第一問可知:,則其中,且,,故,由第一問可知,又是的中點,所以,所以,因為三棱錐中,所以,所以,故直線AD與EM所成角范圍為.【點睛】針對于立體幾何中角度范圍的題目,可以建立空間直角坐標系來進行求解,若不容易建立坐標系時,也可以通過基底表達出各個向量,進而求出答案.20、(1);(2)有99%的把握認為甲、乙兩塊試驗田的環(huán)境差異對茶樹的生長有影響【解析】(1)根據(jù)即可求出,從而可得到;(2)根據(jù)獨立性檢驗的基本思想求出的觀測值,與6.635比較,即可判斷【小問1詳解】甲試驗田優(yōu)質茶樹比例為50%,即,解得【小問2詳解】,因為,故有99%的把握認為甲、乙兩塊試驗田的環(huán)境差異對茶樹的生長有影響21、(1)單調遞增區(qū)間為,單調遞減區(qū)間為;(2)【解析】(1)求出函數(shù)的導數(shù),解關于導函數(shù)的不等式,求出函數(shù)的單調區(qū)間即可;(2)根據(jù)函數(shù)的單調性求出函數(shù)的極值點,從而求出函數(shù)的最值即可【詳解】解:(1)由題意得,,令,得,令,得或,故函數(shù)的單調遞增區(qū)間為,單調遞減區(qū)間為(2)易知,因為,所以(或由,可得),又當時,,所以函數(shù)在區(qū)間上的值域為【點睛】確定函數(shù)單調區(qū)間的步驟:第一步,確定函數(shù)的定義域;第

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論