版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
2023年中考數(shù)學考前信息必刷卷04數(shù)學(江蘇南通專用)2023年江蘇南通中考數(shù)學試卷結構和內(nèi)容沒有太大變化!2023年數(shù)學試卷滿分150分,共26題試題,試卷結構為10道選擇題(3分×10共30分)+8道填空題(3分×2+4分×6共30分)+8道解答題(共90分)。根據(jù)最新考試信息以及模擬考試可以發(fā)現(xiàn):關注學科主干知識,重點對學科基本概念、基本原理的考查??疾閮?nèi)容重基礎、重應用,重視學生的數(shù)學活動,注重和高中知識接軌,注重古代文化的滲透。壓軸題具有綜合性和創(chuàng)新性,但不偏不怪。不考特別簡單的送分題,不會單純考查學生的死記硬背的機械記憶力,試題避免繁難的計算。注重發(fā)展學生的數(shù)感,符號感,空間觀念,統(tǒng)計觀念、推理能力以及思想方法,強化數(shù)學意識的轉化和應用能力。從知識點的分布看,實數(shù)的有關概念及其運算,代數(shù)式的化簡求值,方程不等式組的解法及函數(shù)知識的綜合應用,仍將是考試的重點。對于函數(shù),側重考查一次函數(shù)、反比例函數(shù)的圖象和性質(zhì)、函數(shù)與方程不等式之間的聯(lián)系以及函數(shù)的應用,二次函數(shù)大概率是含參純二次函數(shù),可能以新定義形式出現(xiàn)。幾何方面,側重對特殊四邊形的判定及性質(zhì)的應用,以解答題的形式出現(xiàn),綜合三角形的全等與相似及銳角三角函數(shù),形式通常是證明加計算。解直角三角形的應用也是??碱}型;對于圓的考查,著重于證明和計算,總體難度不會很高。此外,統(tǒng)計與概率也是必考內(nèi)容。通過對考試信息的梳理以及教學研究成果,中考試卷側重增加文化的考查,加強問題背景的設置,加大考查的深度和廣度。同時應加強學生的畫圖能力、識圖能力、動手能力、探究能力、思維能力,注重數(shù)學思維方法的訓練。對于創(chuàng)新型試題要增加思維的含量,重點考查學生將舊知識轉化為新知識的能力。在教學中應引導學生弄清算理來提高運算能力。選擇題1到5題道涉及有理數(shù)、實數(shù)的有關概念及計算、科學計數(shù)法、三視圖、數(shù)據(jù)統(tǒng)計以及平行線;第68題主要是方程組的應用、含參不等式及四邊形問題;第9題、第10題一般考查反比例函數(shù)與幾何圖形綜合,函數(shù)圖象信息題,以及幾何最值或代數(shù)最值問題;填空題11,12題,主要涉及因式分解、多邊形的內(nèi)角與外角、解方程、統(tǒng)計、第13到16題,一般考查一次函數(shù)的圖象和性質(zhì)、四邊形的翻折,角直角三角形的應用、一元二次方程根與系數(shù)關系以及圓的計算;第17和18一般考查反比例函數(shù)與幾何綜合,幾何綜合計算,幾何圖形的翻折、旋轉變換;解答題第19題是基本計算,主要是數(shù)與式的計算、解方程與不等式,第20題考查數(shù)據(jù)的統(tǒng)計和分析;第21題一般是概率題;第22題考查圓的計算或證明,作出合理的輔助線是解題的關鍵;第23題是解直角三角形的應用或特殊四邊形的判定和性質(zhì);第24題考查函數(shù)的的實際應用;第25題主要考查特殊四邊形的性質(zhì)或圖形的翻折旋轉變換,綜合性較強,解題方法豐富,屬于中考壓軸題.第26題主要考查含參二次函數(shù),可以與一次函數(shù)或反比例函數(shù)綜合,一般不與幾何圖形綜合,往往以新定義形式出現(xiàn).注意事項:1.答卷前,考生務必將自己的姓名、考生號等填寫在答題卡和試卷指定位置上.2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡對應題目的答案標號涂黑.如需改動,用橡皮擦干凈后,再選涂其他答案標號.回答非選擇題時,將答案寫在答題卡上.寫在本試卷上無效.3.考試結束后,將本試卷和答題卡一并交回.一、選擇題(本大題共10小題,每小題3分,共30分.在每小題給出的四個選項中,恰有一項是符合題目要求的,請將正確選項的字母代號填涂在答題卡相應位置上)1.下列各組數(shù)中:①﹣0.5與1.5;②34與-43;③a與﹣(﹣a);④a﹣2b與﹣aA.1組 B.2組 C.3組 D.4組【答案】A.【分析】直接根據(jù)相反數(shù)的定義:只有符號不同的兩個數(shù)叫做互為相反數(shù)判斷即可.【詳解】解:①﹣0.5與1.5不是相反數(shù);②34與-③a=﹣(﹣a)不是互為相反數(shù);④a﹣2b與﹣a+2b為相反數(shù);故選:A.【點睛】此題考查的是相反數(shù),掌握相反數(shù)的概念是解決此題關鍵.2.據(jù)國家衛(wèi)健委統(tǒng)計,截至6月2日,我國接種新冠疫苗已超過704000000劑次,把704000000這個數(shù)用科學記數(shù)法表示為()A.7.04×107 B.7.04×109 C.0.704×109 D.7.04×108【答案】D.【分析】科學記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時,要看把原數(shù)變成a時,小數(shù)點移動了多少位,n的絕對值與小數(shù)點移動的位數(shù)相同.當原數(shù)絕對值≥10時,n是正整數(shù).【詳解】解:704000000=7.04×108,故選:D.【點睛】此題主要考查了科學記數(shù)法的表示方法.科學記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù),表示時關鍵要正確確定a的值以及n的值.3.如圖所示的幾何體的主視圖是()A. B. C. D.【答案】A.【分析】找到從前面看所得到的圖形即可.【詳解】解:從前面看可得到左邊有2個正方形,右邊有1個正方形,所以選A.【點睛】本題考查了三視圖的知識,主視圖是指從前面看所得到的圖形.4.下列計算正確的是()A.(a2b)3=a6b3 B.a(chǎn)2+a=a3 C.a(chǎn)3?a4=a12 D.a(chǎn)6÷a3=a2【答案】A.【分析】分別根據(jù)積的乘方運算法則,合并同類項法則,同底數(shù)冪的乘法法則以及同底數(shù)冪的除法法則逐一判斷即可.(BD選項非試卷原題)【詳解】解:A.(a2b)3=a6b3,故本選項符合題意;B.a(chǎn)2與a不是同類項,所以不能合并,故本選項不合題意;C.a(chǎn)3?a4=a7,故本選項不合題意;D.a(chǎn)6÷a3=a3,故本選項不合題意;故選:A.【點睛】本題考查了合并同類項,同底數(shù)冪的乘除法以及積的乘方,掌握相關運算法則是解答本題的關鍵.5.下列調(diào)查中,適宜采用全面調(diào)查方式的是()A.調(diào)查某市民實施低碳生活情況 B.對宇宙飛船的零部件的檢查 C.調(diào)查某品牌食品的蛋白質(zhì)含量 D.了解一批電池的使用壽命【答案】B.【分析】根據(jù)“普查、抽查”的意義和適用情況逐項進行判斷即可.【詳解】解:A.調(diào)查某市民實施低碳生活情況,由于市民較多,同時也沒有必要全面調(diào)查,因此可采用抽查,故選項A不符合題意;B.對宇宙飛船的零部件的檢查調(diào)查,由于個別零部件不合格會導致飛船發(fā)射運轉失敗,因此必須采用普查,故選項B符合題意;C.某品牌食品的蛋白質(zhì)含量,由于該產(chǎn)品生產(chǎn)數(shù)量較大,普查有很大的難度,且沒有必要普查,適合抽查,故選項C不符合題意;D.了解一批電池的使用壽命,普查具有破壞性,適用抽查,因此選項D不符合題意;故選:B.【點睛】本題考查抽查、普查,理解抽查、普查的意義和適用的實際的情況是正確判斷的前提.6.在?ABCD中,AB=5,BC=3,則它的周長為()A.6 B.8 C.10 D.16【答案】D.【分析】根據(jù)平行四邊形的性質(zhì)得到AB=CD=5,BC=AD=3,根據(jù)?ABCD的周長=AB+BC+CD+AD代入即可求出答案.【詳解】解:∵四邊形ABCD是平行四邊形,∴AB=CD=5,BC=AD=3,則?ABCD的周長是AB+BC+CD+AD=5+3+5+3=16.故選:D.【點睛】本題主要考查對平行四邊形的性質(zhì)的理解和掌握,能根據(jù)平行四邊形的性質(zhì)得到AB=CD,BC=AD是解此題的關鍵.7.“學黨史,知黨恩,跟黨走”.某校開展閱讀中國共產(chǎn)黨黨史活動,已知小軒平均每天閱讀的頁數(shù)比小宇平均每天閱讀的頁數(shù)的2倍少10頁,且小宇2天里閱讀的總頁數(shù)比小軒3天里閱讀的總頁數(shù)少6頁,問小宇、小軒平均每天分別閱讀多少頁?設小宇、小軒平均每天分別閱讀x頁、y頁,則下列方程組中正確的是()A.2x=3y-6C.2x=3y+6【答案】A.【分析】設小宇、小軒平均每天分別閱讀x頁、y頁,則由小軒平均每天閱讀的頁數(shù)比小宇平均每天閱讀的頁數(shù)的2倍少10頁,且小宇2天里閱讀的總頁數(shù)比小軒3天里閱讀的總頁數(shù)少6頁可列出方程組.【詳解】解:設小宇、小軒平均每天分別閱讀x頁、y頁,根據(jù)題意可得:2x故選:A.【點睛】本題考查了由實際問題抽象出二元一次方程組,解答本題的關鍵是讀懂題意,設出未知數(shù),找出合適的等量關系,列方程組.8.定義一種運算:a※b=ab﹣a+b﹣2.例如:2※5=2×5﹣2+5﹣2=11.那么不等式3※x≤2的正整數(shù)解是()A.1 B..74 C..0或1 D.【答案】A.【分析】根據(jù)新定義可得出關于x的一元一次不等式,解之取其中的正整數(shù)即可得出結論.【詳解】解:∵3※x=3x﹣3+x﹣2≤2,∴x≤7∵x為正整數(shù),∴不等式3※x≤2的正整數(shù)解是1.故選:A.【點睛】本題考查一元一次不等式的整數(shù)解以及實數(shù)的運算,求得不等式的解集是解題的關鍵.9.如圖1,在△ABC中,AB=AC,BC=m,D,E分別是AB,AC邊的中點,點P為BC邊上的一個動點,連接PD,PA,PE.設PC=x,圖1中某條線段長為y,若表示y與x的函數(shù)關系的圖象大致如圖2所示,則這條線可能是()A.PB B.PE C.PA D.PD【答案】D.【分析】分別假定y等于選項中的各個線段,數(shù)形結合進行分析,即可作出判斷.【詳解】解:選項A:若y=PB,已知BC=m,觀察圖形可知PB在x=m取得最小值為0,故A錯誤;選項B:若y=PE,E是AC邊的中點,且AB=AC,可知PE在x=m4取得最小值,觀察圖2,可知選項選項C:若y=PA,由AB=AC,可知PA在x=m2取得最小值,故選項D:由前三個錯誤,可知本選項正確,且由題意及圖形可知PD在x=3故選:D.【點睛】本題考查了動點問題的函數(shù)圖象,數(shù)形結合是解題的關鍵.10.在矩形ABCD中,2<AD<10,tan∠ABD=2.如圖,分別以點A,D為圓心,以4和6為半徑作弧,兩弧交于點E,連接BE,則BE的最大值為()A.9 B.25+3 C.15 D.2【答案】B.【分析】作∠E′ED=90°,且EE′=3,連接BE′,DE′,證明△ADE∽△BDE′,求出BE′=25,說明點B是在以E′為圓心,25為半徑的圓上運動,而點E在圓E′內(nèi),進而可以解決問題.【詳解】解:如圖,作∠E′ED=90°,且EE′=3,連接BE′,DE′,∴EE'∴tan∠EDE′=1∵tan∠ABD=2,∴ADAB=∴ABAD∴tan∠ADB=1∴EE'DE=ABAD,∠EDE∴∠EDA=∠E′DB,∴△ADE∽△BDE′,∴BE'∴BE'∴BE′=25,∴點B是在以E′為圓心,25為半徑的圓上運動,而點E在圓E′內(nèi),則BE的最大值為25+3故選:B.【點睛】本題考查了矩形的性質(zhì),解直角三角形,相似三角形的判定與性質(zhì),解決本題的關鍵是得到△ADE∽△BDE′.二、填空題(本大題共8小題,第11~12題每題3分,第13~18題每題4分,共30分.不需寫出解答過程,請把答案直接填寫在答題卡相應位置上)11.二次根式2-x在實數(shù)范圍內(nèi)有意義,x的取值范圍是x≤2【答案】x≤2.【分析】根據(jù)二次根式的性質(zhì),被開方數(shù)大于等于0,列不等式求解.【詳解】解:依題意有2﹣x≥0,解得x≤2.故答案為:x≤2.【點睛】主要考查了二次根式的意義和性質(zhì).概念:式子a(a≥0)叫二次根式.性質(zhì):二次根式中的被開方數(shù)必須是非負數(shù),否則二次根式無意義.12.如圖,∠1=∠B,∠2=115°,則∠D=115°.【答案】115°.【分析】由1=∠B,可判定AD∥BC,再根據(jù)“兩直線平行,內(nèi)錯角相等”即可得解.【詳解】解:∵∠1=∠B,∴AD∥BC,∴∠D=∠2,∵∠2=115°,∴∠D=115°,故答案為:115°.【點睛】此題考查了平行線的判定與性質(zhì),熟記平行線的判定定理與性質(zhì)定理是解題的關鍵.13.如圖,已知△ABC是等腰直角三角形,∠ACB=90°,AE⊥BE,2AE=BD,則∠ABE的度數(shù)是22.5°.【答案】22.5°.【分析】延長AE、BC交于點F,證△ACF≌△BCD(ASA),得AF=BD,再證AE=FE,則BA=BF,然后由等腰三角形的性質(zhì)即可得出答案.【詳解】解:如圖,延長AE、BC交于點F,則∠ACF=180°﹣∠ACB=180°﹣90°=90°,∵AE⊥BE,∴∠AED=90°,∴∠CAF+∠ADE=90°,∵△ABC是等腰直角三角形,∠ACB=90°,∴∠ABC=45°,AC=BC,∠CBD+∠BDC=90°,∵∠ADE=∠BDC,∴∠CAF=∠CBD,在△ACF和△BCD中,∠CAF∴△ACF≌△BCD(ASA),∴AF=BD,∵2AE=BD,∴2AE=AF,∴AE=FE,∵AE⊥BE,∴BA=BF,∴∠ABE=∠CBE=12∠ABC=故答案為:22.5°.【點睛】本題考查了全等三角形的判定與性質(zhì)、等腰直角三角形的性質(zhì)、線段垂直平分線的性質(zhì)、等腰三角形的性質(zhì)等知識,熟練掌握等腰三角形的性質(zhì),證明三角形全等是解題的關鍵.14.如圖,已知零件的厚度均勻且外徑為25mm,現(xiàn)用一個交叉卡鉗(兩條尺長AC和BD相等,OC=OD)去測量零件的內(nèi)孔直徑AB,如果OC:AC=1:3,測量得CD=10mm,那么零件的厚度為2.5mm.【答案】2.5.【分析】要求零件的厚度,由題可知只需求出AB即可.因為CD和AB平行,可得△AOB∽△COD,可以根據(jù)相似三角形對應邊成比例即可解答.【詳解】解:∵兩條尺長AC和BD相等,OC=OD,∴OA=OB,∵OC:AC=1:3,∴OC:OA=1:2,∴OD:OB=OC:OA=1:2,∵∠COD=∠AOB,∴△AOB∽△COD,∴CD:AB=OC:OA=1:2,∵CD=10mm,∴AB=20mm,∴2x+20=25,∴x=2.5.故答案是:2.5.【點睛】此題考查相似三角形的應用,本題只要是把實際問題抽象到相似三角形中,利用相似三角形的相似比,列出方程,通過解方程求出零件的內(nèi)孔直徑AB即可求得x的值.15.在“低碳生活,綠色出行”的倡導下,自行車正逐漸成為人們喜愛的交通工具.某運動商城自2018年起自行車的銷售量逐月增加.據(jù)統(tǒng)計,該商城一月份銷售自行車100輛,三月份銷售121輛,該商城的自行車銷量的月平均增長率為10%.【答案】10%.【分析】設運動商城的自行車銷量的月平均增長率為x,根據(jù)該商城一月份、三月份銷售自行車的數(shù)量,即可得出關于x的一元二次方程,解之取其正值即可得出結論.【詳解】解:設運動商城的自行車銷量的月平均增長率為x,根據(jù)題意得:100(1+x)2=121,解得:x1=0.1=10%,x2=﹣2.1(舍去).故答案為:10%.【點睛】本題考查了一元二次方程的應用,找準等量關系,正確列出一元二次方程是解題的關鍵.16.圓錐的底面半徑為3,側面積為21π,則這個圓錐的高為210.【答案】210.【分析】圓錐的側面積=底面周長×母線長÷2,把相應數(shù)值代入即可求得母線長,利用勾股定理即可求得圓錐的高.【詳解】解:設圓錐的母線長為R,則21π=2π×3×R÷2,解得R=7,故圓錐的高=72-故答案為:210.【點睛】本題考查了圓錐的計算,用到的知識點為:圓錐側面積的求法;圓錐的高,母線長,底面半徑組成直角三角形.17.如圖,平行四邊形ABCD中,對角線AC、BD相交于點O,AD=12AC,M、N、P分別是OA、OB、①CN⊥BD;②MN=NP;③四邊形MNCP是菱形;④ND平分∠PNM.其中正確的是①②④.(填寫序號)【答案】①②④.【分析】證出OC=BC,由等腰三角形的性質(zhì)得CN⊥BD,①正確;證出MN是△AOB的中位線,得MN∥AB,MN=12AB,由直角三角形的性質(zhì)得NP=12CD,則MN=NP,②正確;周長四邊形MNCP是平行四邊形,無法證明四邊形MNCP是菱形;③錯誤;由平行線的性質(zhì)和等腰三角形的性質(zhì)證出∠MND=∠PND,則ND平分∠【詳解】解:∵四邊形ABCD是平行四邊形,∴AB=CD,AB∥CD,BC=AD,OA=OC=12∵AD=12∴OC=BC,∵N是OB的中點,∴CN⊥BD,①正確;∵M、N分別是OA、OB的中點,∴MN是△AOB的中位線,∴MN∥AB,MN=12∵CN⊥BD,∴∠CND=90°,∵P是CD的中點,∴NP=12CD=PD=∴MN=NP,②正確;∵MN∥AB,AB∥CD,∴MN∥CD,又∵NP=PC,MN=NP,∴MN=PC,∴四邊形MNCP是平行四邊形,無法證明四邊形MNCP是菱形;③錯誤;∵MN∥CD,∴∠PDN=∠MND,∵NP=PD,∴∠PDN=∠PND,∴∠MND=∠PND,∴ND平分∠PNM,④正確;故答案為:①②④.【點睛】本題考查了平行四邊形性質(zhì)和判定,三角形中位線定理,直角三角形斜邊上的中線性質(zhì),等腰三角形的性質(zhì)等;熟練掌握三角形中位線定理、等腰三角形的性質(zhì)、直角三角形斜邊上的中線性質(zhì)是解題的關鍵.18.在平面直角坐標系xOy中,過O點的直線AB分別交函數(shù)y=-1x(x<0),y=kx(k<0,x>0)的圖象于點A,B,作AC⊥y軸于點C,作CD∥AB交y=kx(k<0,x>0)的圖象于點D,連接OD.若△COD的面積為2,則k【答案】﹣12.【分析】先表示三角形COD面積,再求k.【詳解】解:設A(m,-1m),則AC=﹣m,OC∴C(0,-1∵△COD的面積為2,∴12OC?DM=2,即即12×(-1m)∴DM=﹣4m,∴設D(﹣4m,-k再設直線AB:y=ax,代入A(m,-1m)得:-∴a=-1∴直線AB:y=-1m∵直線CD∥AB.∴設直線CD:y=-1m2x將C代入直線CD得:b=-1∴y=-1m2將D(﹣4m,-k4m)代入直線CD得:-k4m∴k=﹣12.故答案為:﹣12.【點睛】本題考查反比例函數(shù)和一次函數(shù)的綜合應用,求出D的坐標和直線CD的函數(shù)解析式是求解本題的關鍵.三、解答題(本大題共8小題,共90分,請在答題卡指定區(qū)域內(nèi)作答,解答時應寫出文字說明、證明過程或演算步驟)19.(10分)(1)先化簡:a2+2a(2)計算:(﹣1)2021+2﹣3﹣|-132|+(π﹣2022【答案】(1)2;(2)172【分析】(1)先根據(jù)分式的混合運算順序和運算法則化簡原式,再選取使分式有意義的a的值代入計算即可;(2)先計算乘方、負整數(shù)指數(shù)冪和零指數(shù)冪、絕對值,再計算加減即可.【詳解】解:(1)原式=a(=a=2∵a≠0且a﹣1≠0,∴a≠0且a≠1,當a=2時,原式=22-1(2)原式=﹣1+1=1【點睛】本題主要考查分式的化簡求值和實數(shù)的運算,解題的關鍵是掌握分式的混合運算順序和運算法則.20.(8分)在日常生活中我們經(jīng)常會使用到訂書機,如圖MN是裝訂機的底座,AB是裝訂機的托板AB始終與底座平行,連接桿DE的D點固定,點E從A向B處滑動,壓柄BC繞著轉軸B旋轉.已知壓柄BC的長度為12cm,BD=5cm,BC=AB.(1)當托板與壓柄的夾角∠ABC=37°時,如圖①點E從A點滑動了2cm,求連接桿DE的長度.(2)如圖②,當點E從①中的位置又向B處滑動了(10-25)cm,求壓柄BC從①的位置旋轉了多少度?(參考數(shù)據(jù):sin37°≈0.6,cos37°≈0.8,【答案】見試題解答內(nèi)容【分析】(1)作DH⊥BE于H,利用銳角三角函數(shù)和勾股定理即可解決問題;(2)由題意可得AE=2+(10-25)=12﹣25(【詳解】解:(1)如圖①,作DH⊥BE于H,在Rt△BDH中,∠DHB=90°,BD=5,∠ABC=37°,∴DH5=sin37°,BH∴DH=5sin37°≈5×0.6=3(cm),BH=5cos37°≈5×0.8=4(cm).∵AB=BC=12cm,AE=2cm,∴EH=AB﹣AE﹣BH=12﹣2﹣4=6(cm),∴DE=DH2+E答:連接桿DE的長度為35cm;(2)由題意可知:AE=2+(10-25)=12﹣25(∴BE=AB﹣AE=12﹣(12﹣25)=25(cm),∵DE=35cm,BD=5cm,∵(35)2=45,52+(25)2=25+20=45,∴DE2=DB2+BE2,∴∠EBD=90°,∴90°﹣37°=53°,∴壓柄BC從①的位置旋轉了53度.【點睛】本題考查了解直角三角形的應用,解決本題的關鍵是掌握銳角三角函數(shù)定義.21.(10分)一副普通撲克牌中有4張牌,分別是方塊4,黑桃5,梅花6.紅心7,將這四張牌洗勻后正面朝下放在桌面上,從中隨機抽取一張,再從余下的牌中隨機抽取另一張,(1)請用樹狀圖表示抽取的兩張牌牌面數(shù)字所有可能出現(xiàn)的結果;(2)求抽取的兩張牌牌面數(shù)字之和大于11的概率.【答案】見試題解答內(nèi)容【分析】(1)畫出樹狀圖即可;(2)由樹狀圖可知,共有12種等可能的結果,抽取的兩張牌牌面數(shù)字之和大于11的結果有4種,再由概率公式求解即可.【詳解】解:(1)畫樹狀圖如圖:所有可能出現(xiàn)的結果共有12種;(2)由(1)可知,共有12種等可能的結果,抽取的兩張牌牌面數(shù)字之和大于11的結果有4種,∴抽取的兩張牌牌面數(shù)字之和大于11的概率為412【點睛】本題考查的是用列表法或畫樹狀圖法求概率.列表法或畫樹狀圖法可以不重復不遺漏的列出所有可能的結果,列表法適合于兩步完成的事件,樹狀圖法適合兩步或兩步以上完成的事件.注意概率=所求情況數(shù)與總情況數(shù)之比.22.(10分)為慶祝中國共產(chǎn)黨建黨100周年,某校舉行了“紅色華誕,黨旗飄揚”黨史知識競賽,為了解競賽成績,抽樣調(diào)查了七、八年級部分學生的分數(shù),過程如下:收集數(shù)據(jù):從該校七、八年級學生中各隨機抽取20名學生的分數(shù),其中被抽取的20名八年級學生的分數(shù)如下:81、83、84、85、86、87、87、88、89、90、92、92、93、95、95、95、99、99、100、100整理、描述數(shù)據(jù):按下表分段整理、描述樣本數(shù)據(jù):80≤x<8585≤x<9090≤x<9595≤x≤100七年級4628八年級3a47分析數(shù)據(jù):兩組樣本數(shù)據(jù)的平均數(shù)、中位數(shù)、眾數(shù)、方差如表所示:年級平均數(shù)中位數(shù)眾數(shù)方差七年級91899740.9八年級91bcd根據(jù)以上提供的信息,解答下列問題:(1)填空:a=6,b=91,c=95,d=33.2;(2)樣本數(shù)據(jù)中,七年級甲同學和八年級乙同學的分數(shù)都為90分,甲同學的分數(shù)在本年級抽取的分數(shù)中從高到低排序更靠前(填“甲”或“乙”),請說明理由;(3)如果七年級共有400人參賽,求該年級約有多少人的分數(shù)不低于95分.【答案】見試題解答內(nèi)容【分析】(1)根據(jù)七、八年級學生中各隨機抽取20名學生的分數(shù)可得a=6,第10,11名學生的成績?yōu)?0分,92分,即可求出b的值,95分出現(xiàn)了3次,次數(shù)最多,可得c的值;根據(jù)方差公式計算即可得d的值;(2)根據(jù)八年級的中位數(shù)是91分,七年級的中位數(shù)是89分,可得90分大于七年級成績的中位數(shù),而小于八年級成績的中位數(shù),進而可得結論;(3)用七年級不低于95分的比例乘以總人數(shù)即可.【詳解】解:(1)a=20﹣3﹣4﹣7=6,b=c=95,d=S2=120×[(81﹣91)2+(83﹣91)2+(84﹣91)2+(85﹣91)2+(86﹣91)2+2×(87﹣91)2+(88﹣91)2+(89﹣91)2+(90﹣91)2+2×(92﹣91)2+(93﹣91)2+3×(95﹣91)2+2×(99﹣91)2+2×(100﹣91)2]故答案為:6,91,95,33.2;(2)甲同學的分數(shù)在本年級抽取的分數(shù)中從高到低排序更靠前.理由:八年級成績中位數(shù)91,七年級成績中位數(shù)是89,∴90分大于七年級成績的中位數(shù),小于八年級成績的中位數(shù),∴七年級甲同學的分數(shù)在本年級抽取的分數(shù)中從高到低排序更靠前,故答案為:甲;(3)400×8答:該年級約有160人的分數(shù)不低于95分.【點睛】本題考查頻數(shù)分布表、用樣本估計總體、方差、中位數(shù)、眾數(shù)的意義及求法,理解各個統(tǒng)計量的意義,明確各個統(tǒng)計量的特點是解決問題的前提和關鍵.23.(12分)如圖,AB為⊙O的直徑,C為BA延長線上的一點,CD為⊙O的切線,D為切點,DE⊥AB于點F,連結BE.(1)求證:∠ABE(2)作BG⊥CD交CD延長線于點G,交⊙O點H,若sinC=23,BG=10【答案】見試題解答內(nèi)容【分析】(1)連接OD,OE,利用垂徑定理和圓周角定理得到∠ABE=12∠DOA,利用圓的切線的性質(zhì)定理和直角三角形的性質(zhì)得到∠CDE=∠(2)連接OD,AH,利用直角三角形的邊角關系定理求得線段BC,利用圓周角定理,平行線的判定與性質(zhì)得到∠C=∠HAB,則sin∠HAB=23,設BH=2x,則AB=3x,OB=OD=12AB=【詳解】(1)證明:連接OD,OE,如圖,∵AB為⊙O的直徑,DE⊥AB,∴AD=∴∠DOA=∠EOA.∵∠ABE=12∠∴∠ABE=12∠∵CD為⊙O的切線,∴OD⊥CD,∴∠ODC=90°,∴∠CDE+∠ODE=90°.∵∠ODE+∠DOA=90°,∴∠CDE=∠DOA,∴∠ABE=12∠(2)解:連接OD,AH,如圖,∵BG⊥CD,sinC=BGBC,sinC∴BGBC∴10BC∴BC=15.∵AB為⊙O的直徑,∴∠AHB=90°.∴∠AHB=BGC=90°,∴CG∥AH,∴∠C=∠HAB,∴sin∠HAB=2∵sin∠HAB=BH∴BHAB設BH=2x,則AB=3x,OB=OD=12AB=∴OC=BC﹣OB=15-32∵CD為⊙O的切線,∴OD⊥CD,∵sinC=ODOC,sinC∴ODOC∴32解得:x=4,∴BH=2x=8.∴GH=BG﹣BH=10﹣8=2.【點睛】本題主要考查了圓的有關性質(zhì),圓周角定理,垂徑定理,勾股定理,直角三角形的邊角關系定理,圓的切線的性質(zhì)定理,連接經(jīng)過切點的半徑是解決此類問題常添加的輔助線.24.(13分)小王計劃從某批發(fā)市場批量購買A、B兩種仿古秦兵馬俑工藝品擺件,已知A種擺件的批發(fā)價比B種擺件的批發(fā)價每個少5元,且用400元購買的A種擺件數(shù)量與用500元購買的B種擺件數(shù)量相同.(1)求A、B兩種擺件的單價各是多少?(2)憑會員卡在此批發(fā)市場購買商品可以獲得8折優(yōu)惠,會員卡費用為50元若小王購買會員卡并用此卡按需購買100個仿古秦兵馬俑工藝品擺件,共用了y元,設A種擺件購買了x個,請求出y與x之間的函數(shù)關系式.若小王共用了1930元,則他購買A、B兩種擺件各多少個?【答案】見試題解答內(nèi)容【分析】(1)設A種擺件的單價為x元,則B種擺件的單價為(x+5)元,根據(jù)數(shù)量=總價÷單價結合用400元購進A種擺件的數(shù)量與用500元購進的B種擺件的數(shù)量相同,即可得出關于x的分式方程,解之經(jīng)檢驗后即可得出結論;(2)根據(jù)題意可得y與x之間的函數(shù)關系式,再把y=1930代入解答即可.【詳解】解:(1)設A種擺件的單價為x元,則B種擺件的單價為(x+5)元,依題意,得:400x解得:x=20,經(jīng)檢驗,x=20是原方程的解,且符合題意,∴x+5=25.答:A種擺件的單價為20元,B種擺件的單價為25元.(2)根據(jù)題意,y=20×0.8x+25×0.8(100﹣x)+50=﹣4x+2050,當y=1930時,﹣4x+2050=1930,解得:x=30,100﹣30=70(個),答:他購買A擺件30個,B種擺件70個.【點睛】本題考查了分式方程的應用以及一次函數(shù)的應用,解題的關鍵是:(1)找準等量關系,正確列出分式方程;(2)根據(jù)總價=單價×數(shù)量,列出y與x之間的函數(shù)關系式.25.(13分)在Rt△ABC中,∠ABC=90°,∠BAC=30°,將△ABC繞點A順時針旋轉一定的角度α(0°<α<360°)得到△AED,點B、C的對應點分別是E、D.(1)如圖1,當點E恰好在AC上時,求∠CDE的度數(shù);(2)如圖2,若α=60°時,點F是邊AC中點,求證:四邊形BFDE是平行四邊形;(3)若BC=1,連接CE、CD,設△CDE的面積為S,直接寫出S的取值范圍.【答案】見試題解答內(nèi)容【分析】(1)由旋轉得AD=AC,通過等腰三角形及直角三角形導出∠CDE.(2)由旋轉及點F為斜邊中線得DE=BF,再添加輔助線證明DE∥BF從而得到四邊形BFDE是平行四邊形.(3)線段DE為定值,點C到DE距離最大時△CDE的面積取最大值.【詳解】(1)解:∵∠ABC=90°,∠BAC=30°,∴∠ACB=60°.∵△ABC繞點順時針旋轉得到△ADE,點E恰好在AC上,∴CA=AD,∠EAD=∠BAC=30°,∴∠ACD=∠ADC=12(180°﹣30°)=∵∠EDA=∠ACB=60°,∴∠CDE=∠ADC﹣∠EDA=15°;(2)證明:因為點F是邊AC中點,∴BF=AF=12∵∠BAC=30°,∴BC=12∴∠FBA=∠BAC=30°.∵△ABC繞點A順時針旋轉60°得到△ADE,∴∠BAE=∠CAD=60°,CB=DE,∠DEA=∠ABC=90°,∴DE=BF.延長BF交AE于點G,則∠BGE=∠GBA+BAG=90°,∴BF∥ED,∴四邊形BFDE為平行四邊形;(3)解:∵線段DE為定值,∴點C到DE距離最大時△CDE的面積取最大值.如圖,當點C,A,E共線時,S有最大值.∵BC=DE=1,∠CAB=∠DAE=30°,∴CA=2,AE=3∴CE=CA+AE=2+3∴最大面積S=12?DE?CE=12×1×(∴0<S≤1+3【點睛】本題屬于四邊形作圖,考查了解三角形,平行四邊形的的判定和性質(zhì),解題關鍵是掌握直角三角形的性質(zhì),斜邊上的中線長度等于斜邊長度的一半
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2026年海洋能發(fā)電公司安全風險防范管理制度
- 2026春貴州貴陽市觀山湖區(qū)第七中學招臨聘教師6人備考題庫含答案詳解
- 2026年光建一體化科技公司精密設備存儲與運輸管理制度
- 2026江蘇南京大學化學學院助理招聘備考題庫及答案詳解(典優(yōu))
- (2025年)泰安市泰山區(qū)網(wǎng)格員考試題庫及答案
- (2025年)節(jié)能減排知識競賽試題答案全
- 2026江蘇南京大學化學學院博士后招聘備考題庫附答案詳解(綜合卷)
- 2026年叉車安全理論考試題庫及參考答案
- 2026年叉車安全考試題及答案1套
- 2026年叉車實訓考試題庫及完整答案1套
- 《軌道交通工程拱蓋法技術規(guī)范》
- 2025年國家電網(wǎng)電工類能力招聘考試筆試試題(含答案)
- 瀝青路面監(jiān)理規(guī)劃
- 2026屆山東省濟南高新區(qū)四校聯(lián)考九年級數(shù)學第一學期期末考試試題含解析
- 模塊管線施工方案
- 2025年訂單農(nóng)業(yè)行業(yè)研究報告及未來行業(yè)發(fā)展趨勢預測
- 物業(yè)配電保養(yǎng)培訓課件
- GB/T 46015-2025適老家具設計指南
- 2025年北京市中考數(shù)學試卷深度分析及2026年備考建議
- 變電所二次設備課件
- 山東煙草招聘考試真題2024
評論
0/150
提交評論