版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
湖北武漢市2025屆數(shù)學(xué)高二上期末達(dá)標(biāo)檢測試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號(hào)。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.等差數(shù)列中,,則前項(xiàng)的和()A. B.C. D.2.根據(jù)如下樣本數(shù)據(jù),得到回歸直線方程,則x345678y4.02.5-0.50.5-2.0-3.0A. B.C. D.3.若數(shù)列1,a,b,c,9是等比數(shù)列,則實(shí)數(shù)b的值為()A.5 B.C.3 D.3或4.直線的傾斜角大小為()A. B.C. D.5.已知直線和圓,則“”是“直線與圓相切”的().A.必要不充分條件 B.充分不必要條件C.充要條件 D.既不充分也不必要條件6.已知向量,,且,,,則一定共線的三點(diǎn)是()A.A,B,D B.A,B,CC.B,C,D D.A,C,D7.接種疫苗是預(yù)防控制新冠疫情最有效的方法,我國自2021年1月9日起實(shí)施全民免費(fèi)接種新冠疫苗并持續(xù)加快推進(jìn)接種工作.某地為方便居民接種,共設(shè)置了A、B、C三個(gè)新冠疫苗接種點(diǎn),每位接種者可去任一個(gè)接種點(diǎn)接種.若甲、乙兩人去接種新冠疫苗,則兩人不在同一接種點(diǎn)接種疫苗的概率為()A. B.C. D.8.已知銳角的內(nèi)角A,B,C的對邊分別為a,b,c,若向量,,,則的最小值為()A. B.C. D.9.已知雙曲線(,)的左、右焦點(diǎn)分別為,,點(diǎn)A的坐標(biāo)為,點(diǎn)P是雙曲線在第二象限的部分上一點(diǎn),且,點(diǎn)Q是線段的中點(diǎn),且,Q關(guān)于直線PA對稱,則雙曲線的離心率為()A.3 B.2C. D.10.阿基米德是古希臘著名的數(shù)學(xué)家、物理學(xué)家,他利用“逼近法”得到橢圓的面積除以圓周率等于橢圓的長半軸長與短半軸長的乘積,已知在平面直角坐標(biāo)系中,橢圓的面積為,兩焦點(diǎn)與短軸的一個(gè)端點(diǎn)構(gòu)成等邊三角形,則橢圓的標(biāo)準(zhǔn)方程是()A. B.C. D.11.已知、是橢圓和雙曲線的公共焦點(diǎn),是它們的一個(gè)公共點(diǎn),且,橢圓的離心率為,雙曲線的離心率為,則()A.2 B.3C.4 D.512.“”是“直線和直線垂直”的()A.充分非必要條件 B.必要非充分條件C.充要條件 D.既非充分又非必要條件二、填空題:本題共4小題,每小題5分,共20分。13.已知曲線在點(diǎn)處的切線方程是,則的值為______14.曲線在處的切線方程為______.15.若拋物線上一點(diǎn)到其準(zhǔn)線的距離為4,則拋物線的標(biāo)準(zhǔn)方程為___________.16.某學(xué)生到某工廠進(jìn)行勞動(dòng)實(shí)踐,利用打印技術(shù)制作模型.如圖,該模型為一個(gè)大圓柱中挖去一個(gè)小圓柱后剩余部分(兩個(gè)圓柱底面圓的圓心重合),大圓柱的軸截面是邊長為的正方形,小圓柱的側(cè)面積是大圓柱側(cè)面積的一半,打印所用原料的密度為,不考慮打印損耗,制作該模型所需原料的質(zhì)量為________g.(?。┤?、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓的左焦點(diǎn)為F,右頂點(diǎn)為,M是橢圓上一點(diǎn).軸且(1)求橢圓C的標(biāo)準(zhǔn)方程;(2)直線與橢圓C交于E,H兩點(diǎn),點(diǎn)G在橢圓C上,且四邊形平行四邊形(其中O為坐標(biāo)原點(diǎn)),求18.(12分)已知函數(shù).(1)當(dāng)時(shí),求函數(shù)的極值;(2)若對,恒成立,求的取值范圍.19.(12分)已知直線.(1)若,求直線與直線交點(diǎn)坐標(biāo);(2)若直線與直線垂直,求a的值.20.(12分)已知函數(shù)(…是自然對數(shù)的底數(shù)).(1)求的單調(diào)區(qū)間;(2)求函數(shù)的零點(diǎn)的個(gè)數(shù).21.(12分)如圖,在長方體中,底面是邊長為1的正方形,側(cè)棱長為2,且動(dòng)點(diǎn)P在線段AC上運(yùn)動(dòng)(1)若Q為的中點(diǎn),求點(diǎn)Q到平面的距離;(2)設(shè)直線與平面所成角為,求的取值范圍22.(10分)在①,②,③,這三個(gè)條件中任選一個(gè),補(bǔ)充在下面的問題中,并解答問題在中,內(nèi)角A,,的對邊分別為,,,且滿足______________(1)求;(2)若的面積為,在邊上,且,求的最小值注:如果選擇多個(gè)條件分別解答,按第一個(gè)解答計(jì)分
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】利用等差數(shù)列下標(biāo)和性質(zhì)可求得,根據(jù)等差數(shù)列求和公式可求得結(jié)果.【詳解】數(shù)列為等差數(shù)列,,解得:;.故選:D.2、B【解析】作出散點(diǎn)圖,由散點(diǎn)圖得出回歸直線中的的符號(hào)【詳解】作出散點(diǎn)圖如圖所示.由圖可知,回歸直線=x+的斜率<0,當(dāng)x=0時(shí),=>0.故選B【點(diǎn)睛】本題考查了散點(diǎn)圖的概念,擬合線性回歸直線第一步畫散點(diǎn)圖,再由數(shù)據(jù)計(jì)算的值3、C【解析】根據(jù)等比數(shù)列的定義,利用等比數(shù)列的通項(xiàng)公式求解【詳解】解:設(shè)該等比數(shù)列公比為q,∵數(shù)列1,a,b,c,9是等比數(shù)列,∴,,∴,故,解得,∴故選:C4、B【解析】將直線方程變?yōu)樾苯厥?,根?jù)斜率與傾斜角關(guān)系可直接求解.【詳解】由直線可得,所以,設(shè)傾斜角為,則因?yàn)樗怨蔬x:B5、B【解析】首先求出直線與圓相切時(shí)的取值,再根據(jù)充分必要條件的定義判斷.【詳解】若直線與圓相切,則圓心到直線的距離,則,解得,所以“”是“直線與圓相切”的充分不必要條件.故選:B【點(diǎn)睛】本題考查直線與圓的位置關(guān)系,充分必要條件,重點(diǎn)考查計(jì)算,理解能力,屬于基礎(chǔ)題型.6、A【解析】由已知,分別表示出選項(xiàng)對應(yīng)的向量,然后利用平面向量共線定理進(jìn)行判斷即可完成求解.【詳解】因,,,選項(xiàng)A,,,若A,B,D三點(diǎn)共線,則,即,解得,故該選項(xiàng)正確;選項(xiàng)B,,,若A,B,C三點(diǎn)共線,則,即,解得不存,故該選項(xiàng)錯(cuò)誤;選項(xiàng)C,,,若B,C,D三點(diǎn)共線,則,即,解得不存在,故該選項(xiàng)錯(cuò)誤;選項(xiàng)D,,,若A,C,D三點(diǎn)共線,則,即,解得不存在,故該選項(xiàng)錯(cuò)誤;故選:A.7、C【解析】利用古典概型的概率公式可求出結(jié)果【詳解】由題知,基本事件總數(shù)為甲、乙兩人不在同一接種點(diǎn)接種疫苗的基本事件數(shù)為由古典概型概率計(jì)算公式可得所求概率故選:8、C【解析】由,得到,根據(jù)正弦、余弦定理定理化簡得到,化簡得到,再結(jié)合基本不等式,即可求解.【詳解】由題意,向量,,因?yàn)椋?,可得,由正弦定理得,整理得,又由余弦定理,可得,因?yàn)?,所以,由,所以,因?yàn)槭卿J角三角形,且,可得,解得,所以,所以,當(dāng)且僅當(dāng),即時(shí)等號(hào)成立,故的最小值為.故選:C9、C【解析】由角平分線的性質(zhì)可得,結(jié)合已知條件即可求雙曲線的離心率.【詳解】由題設(shè),易知:,由知:,即,整理得:.故選:C10、A【解析】由橢圓的面積為和兩焦點(diǎn)與短軸的一個(gè)端點(diǎn)構(gòu)成等邊三角形,得到求解.【詳解】由題意得,解得,所以橢圓的標(biāo)準(zhǔn)方程是.故選:A11、C【解析】依據(jù)橢圓和雙曲線定義和題給條件列方程組,得到關(guān)于橢圓的離心率和雙曲線的離心率的關(guān)系式,即可求得的值.【詳解】設(shè)橢圓的長軸長為,雙曲線的實(shí)軸長為,令,不妨設(shè)則,解之得代入,可得整理得,即,也就是故選:C12、A【解析】根據(jù)直線垂直求出值即可得答案.【詳解】解:若直線和直線垂直,則,解得或,則“”是“直線和直線垂直”的充分非必要條件.故選:A.二、填空題:本題共4小題,每小題5分,共20分。13、11【解析】根據(jù)給定條件結(jié)合導(dǎo)數(shù)的幾何意義直接計(jì)算作答.【詳解】因曲線在點(diǎn)處的切線方程是,則,,所以.故答案為:1114、【解析】先求出函數(shù)的導(dǎo)函數(shù),然后結(jié)合導(dǎo)數(shù)的幾何意義求解即可.【詳解】解:由,得,則,即當(dāng)時(shí),,所以切線方程為:,故答案為:.【點(diǎn)睛】本題考查了曲線在某點(diǎn)處的切線方程的求法,屬基礎(chǔ)題.15、【解析】先由拋物線的方程求出準(zhǔn)線的方程,然后根據(jù)點(diǎn)到準(zhǔn)線的距離可求,進(jìn)而可得拋物線的標(biāo)準(zhǔn)方程.【詳解】拋物線的準(zhǔn)線方程為,點(diǎn)到其準(zhǔn)線的距離為,由題意可得,解得,故拋物線的標(biāo)準(zhǔn)方程為.故答案為:.16、4500【解析】根據(jù)題意可知大圓柱底面圓的半徑,兩圓柱的高,設(shè)小圓柱的底面圓的半徑為,再根據(jù)小圓柱的側(cè)面積是大圓柱側(cè)面積的一半,求出小圓柱的底面圓的半徑,然后求出該模型的體積,從而可得出答案.【詳解】解:根據(jù)題意可知大圓柱的底面圓的半徑,兩圓柱的高,設(shè)小圓柱的底面圓的半徑為,則有,即,解得,所以該模型的體積為,所以制作該模型所需原料的質(zhì)量為.故答案為:4500.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】(1)根據(jù)橢圓的簡單幾何性質(zhì)即可求出;(2)設(shè),聯(lián)立與橢圓方程,求出,再根據(jù)平行四邊形的性質(zhì)求出點(diǎn)的坐標(biāo),然后由點(diǎn)G在橢圓C上,可求出,從而可得【小問1詳解】∵橢圓C的右頂點(diǎn)為,∴,∵軸,且,∴,∴,所以橢圓C的標(biāo)準(zhǔn)方程為【小問2詳解】設(shè),將直線代入,消去y并整理得,由,得.(*)由根與系數(shù)的關(guān)系可得,∴,∵四邊形為平行四邊形,∴,得,將G點(diǎn)坐標(biāo)代人橢圓C的方程得,滿足(*)式∴18、(1)極小值為,無極大值;(2).【解析】(1)對函數(shù)進(jìn)行求導(dǎo)、列表、判斷函數(shù)的單調(diào)性,最后根據(jù)函數(shù)極值的定義進(jìn)行求解即可;(2)對進(jìn)行常變量分離,然后構(gòu)造新函數(shù),對新函數(shù)進(jìn)行求導(dǎo),判斷其單調(diào)性,進(jìn)而求出新函數(shù)的最值,最后根據(jù)題意求出的取值范圍即可.【詳解】(1)函數(shù)的定義域?yàn)?,?dāng)時(shí),.由,得.當(dāng)變化時(shí),,的變化情況如下表-0+單調(diào)遞減極小值單調(diào)遞增所以在上單調(diào)遞減,上單調(diào)遞增,所以函數(shù)的極小值為,無極大值.(2)對,恒成立,即對,恒成立.令,則.由得,當(dāng)時(shí),,單調(diào)遞增;當(dāng)時(shí),,單調(diào)遞減,所以,因此.所以的取值范圍是.【點(diǎn)睛】本題考查了利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性、極值、最值,考查了構(gòu)造函數(shù)法、常變量分離法,考查了數(shù)學(xué)運(yùn)算能力和分類討論思想.19、(1)(2)【解析】(1)聯(lián)立兩直線方程,解方程組即可得解;(2)根據(jù)兩直線垂直列出方程,解之即可得出答案.【小問1詳解】解:當(dāng)時(shí),直線,聯(lián)立,解得,即交點(diǎn)坐標(biāo)為;【小問2詳解】解:直線與直線垂直,則,解得.20、(1)當(dāng)時(shí),的單調(diào)遞增區(qū)間為,無單調(diào)遞減區(qū)間;當(dāng)時(shí),的單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為;(2)時(shí)函數(shù)沒有零點(diǎn);或時(shí)函數(shù)有且只有一個(gè)零點(diǎn);時(shí),函數(shù)有兩個(gè)零點(diǎn).【解析】(1)先對函數(shù)求導(dǎo),然后分和兩種情況判斷導(dǎo)函數(shù)正負(fù),求其單調(diào)區(qū)間;(2)由,得,構(gòu)造函數(shù),然后利用導(dǎo)數(shù)求出其單調(diào)區(qū)間和極值,畫出此函數(shù)的圖像,再判斷圖像與直線的交點(diǎn)情況,從而可得答案【詳解】(1)因?yàn)?,所以,?dāng)時(shí),恒成立,所以的單調(diào)遞增區(qū)間為,無單調(diào)遞減區(qū)間;當(dāng)時(shí),令,得;令,得,所以的單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為.(2)顯然0不是函數(shù)的零點(diǎn),由,得.令,則.或時(shí),,時(shí),,所以在和上都是減函數(shù),在上是增函數(shù),時(shí)取極小值,又當(dāng)時(shí),.所以時(shí),關(guān)于的方程無解,或時(shí)關(guān)于的方程只有一個(gè)解,時(shí),關(guān)于的方程有兩個(gè)不同解.因此,時(shí)函數(shù)沒有零點(diǎn),或時(shí)函數(shù)有且只有一個(gè)零點(diǎn),時(shí),函數(shù)有兩個(gè)零點(diǎn).【點(diǎn)睛】關(guān)鍵點(diǎn)點(diǎn)睛:此題考查導(dǎo)數(shù)的應(yīng)用,考查利用導(dǎo)數(shù)求函數(shù)的單調(diào)區(qū)間,考查利用導(dǎo)數(shù)判斷函數(shù)的零點(diǎn),解題的關(guān)鍵是由,得,構(gòu)造函數(shù),然后利用導(dǎo)數(shù)求出其單調(diào)區(qū)間和極值,畫出此函數(shù)的圖像,再判斷圖像與直線的交點(diǎn)情況,考查數(shù)形結(jié)合的思想,屬于中檔題21、(1)1(2)【解析】(1)以AB,AD,為x,y,z軸正向建立直角坐標(biāo)系,利用空間向量法求出平面的法向量,結(jié)合點(diǎn)到平面的距離的向量求法計(jì)算即可;(2)設(shè)點(diǎn),,進(jìn)而得出的坐標(biāo),利用向量的數(shù)量積即可列出線面角正弦值的表達(dá)式,結(jié)合二次函數(shù)的性質(zhì)即可得出結(jié)果.【小問1詳解】由題意,分別以AB,AD,為x,y,z軸正向建立直角坐標(biāo)系,于是,,,,,設(shè)平面法向量所以,解得,,令得,,設(shè)點(diǎn)Q到平面的距離為d,【小問2詳解】由(1)可知,平面的法向量,由P點(diǎn)在線段AC上運(yùn)動(dòng)可設(shè)點(diǎn),于是,,所以,的取值范圍是22、選擇見解析;(1);(2)【解析】(1)選條件①.利用正弦定理邊角互化,結(jié)合兩角和的正弦公式可
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2026上海金橋經(jīng)濟(jì)技術(shù)開發(fā)區(qū)管理委員會(huì)文員公開招聘1人考試參考題庫及答案解析
- 2026年河南應(yīng)用技術(shù)職業(yè)學(xué)院單招職業(yè)技能考試備考試題帶答案解析
- 2026上海愛樂樂團(tuán)招聘5人考試備考題庫及答案解析
- 碳市場系列研究報(bào)告之六:轉(zhuǎn)型金融助力高碳企業(yè)低碳發(fā)展-
- 2026湖北武漢市光谷喻家山學(xué)校校聘教師招聘5人(一)考試參考試題及答案解析
- 2026上海寶山區(qū)行知科創(chuàng)學(xué)院“蓄電池計(jì)劃”招募考試備考試題及答案解析
- 2026年州市中醫(yī)院招募第一批青年見習(xí)11人考試參考試題及答案解析
- 2026年永安市人民政府辦公室(永安市國防動(dòng)員辦公室)關(guān)于公開招聘編外聘用人員備考題庫及一套參考答案詳解
- 2026年長沙市林業(yè)局公開招聘中級(jí)雇員備考題庫有答案詳解
- 2026年格爾木市公安局面向社會(huì)公開招聘警務(wù)輔助人員46人備考題庫含答案詳解
- GB/T 39597-2020出租汽車綜合服務(wù)區(qū)規(guī)范
- 蒂森克虜伯無機(jī)房MC2安裝說明
- 四年級(jí)數(shù)學(xué)下冊解決問題練習(xí)題
- 《康復(fù)評定技術(shù)》考試復(fù)習(xí)題庫(含答案)
- 幼兒園四季交替課件
- 指骨骨折課件
- 初中物理教師新課程標(biāo)準(zhǔn)測試題及答案五套
- 《單位工程施工組織設(shè)計(jì)》實(shí)訓(xùn)任務(wù)書及指導(dǎo)書
- 2022年牡丹江市林業(yè)系統(tǒng)事業(yè)單位招聘考試《林業(yè)基礎(chǔ)知識(shí)》題庫及答案解析
- KTV接待收銀前臺(tái)員工培訓(xùn)資料
- 中波天饋線系統(tǒng)介紹
評論
0/150
提交評論