版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
湖南省長(zhǎng)沙市湖南師大附中2025屆高二上數(shù)學(xué)期末質(zhì)量跟蹤監(jiān)視模擬試題注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)、考場(chǎng)號(hào)和座位號(hào)填寫(xiě)在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時(shí),選出每小題答案后,用2B鉛筆把答題卡上對(duì)應(yīng)題目選項(xiàng)的答案信息點(diǎn)涂黑;如需改動(dòng),用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫(xiě)在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動(dòng),先劃掉原來(lái)的答案,然后再寫(xiě)上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無(wú)效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知直線的方向向量為,則直線l的傾斜角為()A.30° B.60°C.120° D.150°2.若曲線f(x)=x2的一條切線l與直線平行,則l的方程為()A.4x-y-4=0 B.x+4y-5=0C.x-4y+3=0 D.4x+y+4=03.已知矩形,為平面外一點(diǎn),且平面,,分別為,上的點(diǎn),且,,,則()A. B.C.1 D.4.已知函數(shù),若對(duì)任意兩個(gè)不等的正實(shí)數(shù),,都有,則實(shí)數(shù)的最小值為()A. B.C. D.5.若a>0,b>0,且函數(shù)f(x)=4x3﹣ax2﹣2bx+2在x=1處有極值,則ab的最大值等于A.2 B.3C.6 D.96.已知線段AB的端點(diǎn)B在直線l:y=-x+5上,端點(diǎn)A在圓C1:上運(yùn)動(dòng),線段AB的中點(diǎn)M的軌跡為曲線C2,若曲線C2與圓C1有兩個(gè)公共點(diǎn),則點(diǎn)B的橫坐標(biāo)的取值范圍是()A.(-1,0) B.(1,4)C.(0,6) D.(-1,5)7.已知雙曲線,過(guò)左焦點(diǎn)且與軸垂直的直線與雙曲線交于、兩點(diǎn),若弦的長(zhǎng)恰等于實(shí)鈾的長(zhǎng),則雙曲線的離心率為()A. B.C. D.8.當(dāng)實(shí)數(shù),m變化時(shí),的最大值是()A.3 B.4C.5 D.69.函數(shù)的圖象大致為()A B.C D.10.已知,則的最小值是()A.3 B.8C.12 D.2011.已知為虛數(shù)單位,復(fù)數(shù)滿足為純虛數(shù),則的虛部為()A. B.C. D.12.直線被圓截得的弦長(zhǎng)為()A.1 B.C.2 D.3二、填空題:本題共4小題,每小題5分,共20分。13.拋物線上一點(diǎn)到其焦點(diǎn)的距離為,則的值為_(kāi)_____14.平面內(nèi)n條直線兩兩相交,且任意三條直線不過(guò)同一點(diǎn),將其交點(diǎn)個(gè)數(shù)記為,若規(guī)定,則,,_________,_________,(用含n的式子表示)15.已知橢圓的左、右焦點(diǎn)分別為,,上頂點(diǎn)為A,直線與橢圓C的另一個(gè)交點(diǎn)為B,則的面積為_(kāi)__________.16.拋物線的準(zhǔn)線方程為_(kāi)______.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知函數(shù),在處有極值.(1)求、的值;(2)若,有個(gè)不同實(shí)根,求的范圍.18.(12分)在中,角A,B,C所對(duì)的邊分別為a,b,c,且,,.(1)求角B;(2)求a,c的值及的面積.19.(12分)已知三棱柱中,面底面,,底面是邊長(zhǎng)為的等邊三角形,,、分別在棱、上,且.(1)求證:底面;(2)在棱上找一點(diǎn),使得和面所成角的余弦值為,并說(shuō)明理由.20.(12分)在①,②,③,,成等比數(shù)列這三個(gè)條件中選擇符合題意的兩個(gè)條件,補(bǔ)充在下面的問(wèn)題中,并求解.已知數(shù)列中,公差不等于的等差數(shù)列滿足_________,求數(shù)列的前項(xiàng)和.21.(12分)如圖,正三棱柱的側(cè)棱長(zhǎng)為,底面邊長(zhǎng)為,點(diǎn)為的中點(diǎn),點(diǎn)在直線上,且(1)證明:面;(2)求平面和平面夾角的余弦值22.(10分)在如圖所示的幾何體中,四邊形ABCD為正方形,平面ABCD,,,.(1)求證:平面PAD;(2)求直線AB與平面PCE所成角的正弦值;
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】利用直線的方向向量求出其斜率,進(jìn)而求出傾斜角作答.【詳解】因直線的方向向量為,則直線l的斜率,直線l的傾斜角,于是得,解得,所以直線l的傾斜角為.故選:B2、D【解析】設(shè)切點(diǎn)為,則切線的斜率為,然后根據(jù)條件可得的值,然后可得答案.【詳解】設(shè)切點(diǎn)為,因?yàn)?,所以切線的斜率為因?yàn)榍€f(x)=x2的一條切線l與直線平行,所以,即所以l的方程為,即故選:D3、B【解析】由,,得,然后利用向量的加減法法則把向量用向量表示出來(lái),可求出的值,從而可得答案【詳解】解:因?yàn)?,,所以所?因?yàn)?,所以,所以,故選:B4、B【解析】不妨設(shè),由題意,可得,構(gòu)造函數(shù),則在上單調(diào)遞增,從而有在上恒成立,分離參數(shù)轉(zhuǎn)化為最值即可求解.【詳解】解:由題意,不妨設(shè),因?yàn)閷?duì)任意兩個(gè)不等的正實(shí)數(shù),,都有,所以,即,構(gòu)造函數(shù),則,所以在上單調(diào)遞增,所以在上恒成立,即在上恒成立,當(dāng)時(shí),因?yàn)?,所以,所以,?shí)數(shù)的最小值為.故選:B.5、D【解析】求出導(dǎo)函數(shù),利用函數(shù)在極值點(diǎn)處的導(dǎo)數(shù)值為0得到a,b滿足的條件;利用基本不等式求出ab的最值;注意利用基本不等式求最值需注意:一正、二定、三相等解:∵f′(x)=12x2﹣2ax﹣2b又因?yàn)樵趚=1處有極值∴a+b=6∵a>0,b>0∴當(dāng)且僅當(dāng)a=b=3時(shí)取等號(hào)所以ab的最大值等于9故選D點(diǎn)評(píng):本題考查函數(shù)在極值點(diǎn)處的導(dǎo)數(shù)值為0、考查利用基本不等式求最值需注意:一正、二定、三相等6、D【解析】設(shè),AB的中點(diǎn),由中點(diǎn)坐標(biāo)公式求得,代入圓C1:得點(diǎn)點(diǎn)M的軌跡方程,再根據(jù)兩圓的位置關(guān)系建立不等式,代入,求解即可得點(diǎn)B的橫坐標(biāo)的取值范圍.【詳解】解:設(shè),AB的中點(diǎn),則,所以,又因?yàn)槎它c(diǎn)A在圓C1:上運(yùn)動(dòng),所以,即,因?yàn)榍€C2與圓C1有兩個(gè)公共點(diǎn),所以,又因B在直線l:y=-x+5上,所以,所以,整理得,即,解得,所以點(diǎn)B的橫坐標(biāo)的取值范圍是,故選:D.7、B【解析】求出,進(jìn)而求出,之間的關(guān)系,即可求解結(jié)論【詳解】解:由題意,直線方程為:,其中,因此,設(shè),,,,解得,得,,弦的長(zhǎng)恰等于實(shí)軸的長(zhǎng),,,故選:B8、D【解析】根據(jù)點(diǎn)到直線的距離公式可知可以表示單位圓上點(diǎn)到直線的距離,利用圓的性質(zhì)結(jié)合圖形即得.【詳解】由題可知,可以表示單位圓上點(diǎn)到直線的距離,設(shè),因直線,即表示恒過(guò)定點(diǎn),根據(jù)圓的性質(zhì)可得.故選:D.9、A【解析】利用導(dǎo)數(shù)求得的單調(diào)區(qū)間,結(jié)合函數(shù)值確定正確選項(xiàng).【詳解】由,可得函數(shù)的減區(qū)間為,增區(qū)間為,當(dāng)時(shí),,可得選項(xiàng)為A故選:A10、A【解析】利用基本不等式進(jìn)行求解即可.【詳解】因?yàn)?,所以,?dāng)且僅當(dāng)時(shí)取等號(hào),即當(dāng)時(shí)取等號(hào),故選:A11、D【解析】先設(shè),代入化簡(jiǎn),由純虛數(shù)定義求出,即可求解.【詳解】設(shè),所以,因?yàn)闉榧兲摂?shù),所以,解得,所以的虛部為:.故選:D.12、C【解析】利用直線和圓相交所得的弦長(zhǎng)公式直接計(jì)算即可.【詳解】由題意可得圓的圓心為,半徑,則圓心到直線的距離,所以由直線和圓相交所得的弦長(zhǎng)公式可得弦長(zhǎng)為:.故選:C.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】將拋物線方程化為標(biāo)準(zhǔn)方程,利用拋物線的定義將拋物線上的點(diǎn)到焦點(diǎn)的距離轉(zhuǎn)化為到準(zhǔn)線的距離,再利用點(diǎn)到直線的距離公式進(jìn)行求解.【詳解】將拋物線化為,由拋物線定義得點(diǎn)到準(zhǔn)線的距離為,即,解得故答案為:.14、①.6;②..【解析】利用第條直線與前條直線相交有個(gè)交點(diǎn)得出與的關(guān)系后可得結(jié)論【詳解】第4條直線與前三條直線有3個(gè)交點(diǎn),因此,同理,由此得到第條直線與前條直線相交有個(gè)交點(diǎn),所以,即所以故答案為:6;15、【解析】求出直線的方程,聯(lián)立方程,求得B點(diǎn)的坐標(biāo),從而可得出答案.【詳解】解:由題意知,,,直線的方程為,聯(lián)立方程組,解得,或,即,所以.故答案為:.16、【解析】由拋物線的標(biāo)準(zhǔn)方程為x2=y,得拋物線是焦點(diǎn)在y軸正半軸的拋物線,2p=1,∴其準(zhǔn)線方程是y=,故答案為三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1),(2)【解析】(1)根據(jù)題設(shè)條件可得,由此可解得與的值(2)依題意可知直線與函數(shù)的圖象有三個(gè)不同的交點(diǎn),則的取值范圍介于極小值與極大值之間.【小問(wèn)1詳解】因?yàn)楹瘮?shù),在處有極值,所以,即,解得,.【小問(wèn)2詳解】由(1)知,,所以在上,,單調(diào)遞增,在上,,單調(diào)遞減,在上,,單調(diào)遞增,所以,,若有3個(gè)不同實(shí)根,則,所以的取值范圍為.18、(1)(2),,【解析】(1)利用正弦定理化簡(jiǎn)已知條件,求得,進(jìn)而求得.(2)利用余弦定理求得和,由此求得三角形的面積.【小問(wèn)1詳解】由于,∴.又∵,∴.∴.【小問(wèn)2詳解】∵,且,,,∴,解得或(舍).∴,.∴.19、(1)證明見(jiàn)解析;(2)為的中點(diǎn),理由見(jiàn)解析.【解析】(1)取的中點(diǎn),連接,利用面面垂直的性質(zhì)定理可得出平面,可得出,再由,結(jié)合線面垂直的判定定理可證得結(jié)論成立;(2)以點(diǎn)為坐標(biāo)原點(diǎn),、、的方向分別為、、軸的正方向建立空間直角坐標(biāo)系,設(shè)點(diǎn),利用空間向量法可得出關(guān)于實(shí)數(shù)的方程,求出的值,即可得出結(jié)論.【詳解】(1)取的中點(diǎn),連接,如圖:因?yàn)槿切问堑冗吶切?,所以,又因?yàn)槊娴酌?,平面平面,面,所以平面,又面,所以,又,,平面;?)以點(diǎn)為坐標(biāo)原點(diǎn),、、的方向分別為、、軸的正方向建立如下圖所示的空間直角坐標(biāo)系,則、、,在上找一點(diǎn),其中,,,,設(shè)面的一個(gè)法向量,則,不妨令,則,和面所成角的余弦值為,則,解得或(舍),所以,為的中點(diǎn),符合題意.20、詳見(jiàn)解析【解析】根據(jù)已知求出的通項(xiàng)公式.當(dāng)①②時(shí),設(shè)數(shù)列公差為,利用賦值法得到與的關(guān)系式,列方程求出與,求出,寫(xiě)出的通項(xiàng)公式,可得數(shù)列的通項(xiàng)公式,利用錯(cuò)位相減法求和即可;選②③時(shí),設(shè)數(shù)列公差為,根據(jù)題意得到與的關(guān)系式,解出與,寫(xiě)出的通項(xiàng)公式,可得數(shù)列的通項(xiàng)公式,利用錯(cuò)位相減法求和即可;選①③時(shí),設(shè)數(shù)列公差為,根據(jù)題意得到與的關(guān)系式,發(fā)現(xiàn)無(wú)解,則等差數(shù)列不存在,故不合題意.【詳解】解:因?yàn)?,,所以是以為首?xiàng),為公比的等比數(shù)列,所以,選①②時(shí),設(shè)數(shù)列公差為,因?yàn)?,所以,因?yàn)?,所以時(shí),,解得,,所以,所以.所以.(i)所以(ii)(i)(ii),得:所以.選②③時(shí),設(shè)數(shù)列公差為,因?yàn)?,所以,即,因?yàn)椋?,成等比?shù)列,所以,即,化簡(jiǎn)得,因?yàn)?,所以,從而,所以,所以,(i)所以(ii)(i)(ii),得:,所以.選①③時(shí),設(shè)數(shù)列公差為,因?yàn)?,所以時(shí),,所以.又因?yàn)?,,成等比?shù)列,所以,即,化簡(jiǎn)得,因?yàn)?,所以,從而無(wú)解,所以等差數(shù)列不存在,故不合題意.【點(diǎn)睛】本題考查了等差(比)數(shù)列的通項(xiàng)公式,考查了錯(cuò)位相減法在數(shù)列求和中的應(yīng)用,考查了轉(zhuǎn)化能力與方程思想,屬于中檔題.21、(1)證明見(jiàn)解析(2)【解析】(1)證明平面,可得出,再由結(jié)合線面垂直的判定定理可證得結(jié)論成立;(2)以點(diǎn)為坐標(biāo)原點(diǎn),、、的方向分別為、、軸的正方向建立空間直角坐標(biāo)系,利用空間向量法可求得結(jié)果.【小問(wèn)1詳解】證明:正中,點(diǎn)為的中點(diǎn),,因?yàn)槠矫妫矫?,則,,則平面,平面,則,又,且,平面.【小問(wèn)2詳解】解:因?yàn)?,以點(diǎn)為坐標(biāo)原點(diǎn),、、的方向分別為、、軸的正方向建立如下圖所示的空間直角坐標(biāo)系,則、、、,設(shè)平面的法向量為,,,則,取,可得,平面,平面,則,又因?yàn)?,,故平面,所以,平面的一個(gè)法向量為
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 執(zhí)行合同誠(chéng)信承諾函4篇
- 家庭中的一個(gè)小故事作文14篇
- 成長(zhǎng)路上的故事記事作文5篇范文
- 建筑設(shè)計(jì)項(xiàng)目策劃與實(shí)施方案
- 數(shù)據(jù)信息安全守秘承諾書(shū)案例故事(7篇)
- 本行業(yè)依法經(jīng)營(yíng)承諾書(shū)(5篇)
- 家庭財(cái)務(wù)管控承諾書(shū)4篇
- 高校研究生導(dǎo)師選拔考核流程方案
- 工程項(xiàng)目合規(guī)施工保證承諾書(shū)5篇
- 公益捐贈(zèng)行為公信承諾書(shū)8篇
- 福建農(nóng)林大學(xué)研究生學(xué)位論文格式的統(tǒng)一要求(2025年修訂)
- 基坑回填安全措施方案
- 地下管線保護(hù)拆除方案
- 廣西萬(wàn)昌宏畜牧養(yǎng)殖場(chǎng)環(huán)境影響報(bào)告書(shū)
- 2026中國(guó)中藥飲片智能煎煮設(shè)備市場(chǎng)培育與渠道建設(shè)報(bào)告
- 2025小學(xué)三年級(jí)英語(yǔ)上冊(cè)期末測(cè)試卷(人教版)
- 機(jī)電工程項(xiàng)目驗(yàn)收標(biāo)準(zhǔn)及流程
- 2025年液壓傳動(dòng)試題及 答案
- 【《家庭文化資本與幼兒學(xué)習(xí)品質(zhì)的關(guān)系實(shí)證分析》24000字】
- 外貿(mào)公司年終總結(jié)報(bào)告
- (2025年)三基三嚴(yán)理論試題+參考答案
評(píng)論
0/150
提交評(píng)論