版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
北京市昌平區(qū)市級名校2025屆數(shù)學高二上期末復習檢測模擬試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知集合,,則中元素的個數(shù)為()A.3 B.2C.1 D.02.已知中心在坐標原點,焦點在軸上的雙曲線的離心率為,則其漸近線方程為()A. B.C. D.3.如圖,在單位正方體中,以為原點,,,為坐標向量建立空間直角坐標系,則平面的法向量是()A.,1, B.,1,C.,, D.,1,4.已知拋物線的焦點為F,過F作斜率為2的直線l與拋物線交于A,B兩點,若弦的中點到拋物線準線的距離為3,則拋物線的方程為()A. B.C. D.5.已知四棱柱ABCD-A1B1C1D1的底面是邊長為2的正方形,側棱與底面垂直,若點C到平面AB1D1的距離為,則直線與平面所成角的余弦值為()A. B.C. D.6.設橢圓:的右頂點為,右焦點為,為橢圓在第二象限內的點,直線交橢圓于點,為原點,若直線平分線段,則橢圓的離心率為A. B.C. D.7.設是定義在R上的函數(shù),其導函數(shù)為,滿足,若,則()A. B.C. D.a,b的大小無法判斷8.某汽車制造廠分別從A,B兩類輪胎中各隨機抽取了6個進行測試,下面列出了每一個輪胎行駛的最遠里程(單位:)A類輪胎:94,96,99,99,105,107B類輪胎:95,95,98,99,104,109根據以上數(shù)據,下列說法正確的是()A.A類輪胎行駛的最遠里程的眾數(shù)小于B類輪胎行駛的最遠里程的眾數(shù)B.A類輪胎行駛的最遠里程的極差等于B類輪胎行駛的最遠里程的極差C.A類輪胎行駛的最遠里程的平均數(shù)大于B類輪胎行駛的最遠里程的平均數(shù)D.A類輪胎的性能更加穩(wěn)定9.函數(shù),的最小值為()A.2 B.3C. D.10.如圖,某圓錐軸截面是等邊三角形,點是底面圓周上的一點,且,點是的中點,則異面直線與所成角的余弦值是()A. B.C. D.11.甲、乙、丙、丁、戊共5名同學進行勞動技術比賽,決出第1名到第5名的名次.甲和乙去詢問成績,回答者對甲說:“很遺憾,你和乙都沒有得到冠軍.”對乙說:“你當然不會是最差的.”從這兩個回答分析,5人的名次排列方式共有()種A.54 B.72C.96 D.12012.已知拋物線,為坐標原點,以為圓心的圓交拋物線于、兩點,交準線于、兩點,若,,則拋物線方程為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知數(shù)列的前項和為,,則___________,___________.14.直線與直線的夾角大小等于_______15.將全體正整數(shù)排成一個三角形數(shù)陣(如圖):按照以上排列的規(guī)律,第9行從左向右的第2個數(shù)為__________.16.某射箭運動員在一次射箭訓練中射靶10次,命中環(huán)數(shù)如下:8,9,8,10,6,7,9,10,8,5,則命中環(huán)數(shù)的平均數(shù)為___________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知數(shù)列滿足(1)證明:數(shù)列為等差數(shù)列,并求數(shù)列的通項公式;(2)設,求數(shù)列的前n項和18.(12分)已知橢圓,離心率為,短半軸長為1(1)求橢圓C的方程;(2)已知直線,問:在橢圓C上是否存在點T,使得點T到直線l的距離最大?若存在,請求出這個最大距離;若不存在,請說明理由19.(12分)如圖,在直三棱柱中,平面?zhèn)让?,?(1)求證:;(2)若直線與平面所成的角為,請問在線段上是否存在點,使得二面角的大小為,若存在請求出的位置,不存在請說明理由.20.(12分)如圖,中,且,將沿中位線EF折起,使得,連結AB,AC,M為AC的中點.(1)證明:平面ABC;(2)求二面角的余弦值.21.(12分)已知曲線上任意一點滿足方程,(1)求曲線的方程;(2)若直線與曲線在軸左、右兩側的交點分別是,且,求的最小值.22.(10分)已知直線:,直線:.(1)若,求與的距離;(2)若,求與的交點的坐標.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】集合中的元素為點集,由題意,可知集合A表示以為圓心,為半徑的單位圓上所有點組成的集合,集合B表示直線上所有的點組成的集合,又圓與直線相交于兩點,,則中有2個元素.故選B.【名師點睛】求集合的基本運算時,要認清集合元素的屬性(是點集、數(shù)集或其他情形)和化簡集合,這是正確求解集合運算的兩個先決條件.集合中元素的三個特性中的互異性對解題影響較大,特別是含有字母的集合,在求出字母的值后,要注意檢驗集合中的元素是否滿足互異性.2、A【解析】根據離心率求出的值,再根據漸近線方程求解即可.【詳解】因雙曲線焦點在軸上,所以漸近線方程為:,又因為雙曲線離心率為,且,所以,解得,即漸近線方程為:.故選:A.3、A【解析】設平面的法向量是,,,由可求得法向量.【詳解】在單位正方體中,以為原點,,,為坐標向量建立空間直角坐標系,,0,,,1,,,1,,,1,,,0,,設平面的法向量是,,,則,取,得,1,,平面的法向量是,1,.故選:.4、B【解析】設出直線,并與拋物線聯(lián)立,得到,再根據拋物線的定義建立等式即可求解.【詳解】因為直線l的方程為,即,由消去y,得,設,則,又因為弦的中點到拋物線的準線的距離為3,所以,而,所以,故,解得,所以拋物線的方程為故選:B.5、A【解析】先由等面積法求得的長,再以為坐標原點,建立如圖所示的空間直角坐標系,運用線面角的向量求解方法可得答案【詳解】如圖,連接交于點,過點作于,則平面,則,設,則,則根據三角形面積得,代入解得以為坐標原點,建立如圖所示的空間直角坐標系則,,設平面的法向量為,,,則,即,令,得,所以直線與平面所成的角的余弦值為,故選:6、B【解析】如上圖,設AC中點為M,連OM,則OM為的中位線,易得∽,且,即可得,選B.點睛:本題主要考查橢圓的方程和性質,主要是離心率的求法,本題的關鍵是利用中位線定理和相似三角形定理7、A【解析】首先構造函數(shù),再利用導數(shù)判斷函數(shù)的單調性,即可判斷選項.【詳解】設,,所以函數(shù)在單調遞增,即,所以,那么,即.故選:A8、D【解析】根據眾數(shù)、極差、平均數(shù)和方差的定義以及計算公式即可求解.【詳解】解:對A:A類輪胎行駛的最遠里程的眾數(shù)為99,B類輪胎行駛的最遠里程的眾數(shù)為95,選項A錯誤;對B:A類輪胎行駛的最遠里程的極差為13,B類輪胎行駛的最遠里程的極差為14,選項B錯誤對C:A類輪胎行駛的最遠里程的平均數(shù)為,B類輪胎行駛的最遠里程的平均數(shù)為,選項C錯誤對D:A類輪胎行駛的最遠里程的方差為,B類輪胎行駛的最遠里程的方差為,故A類輪胎的性能更加穩(wěn)定,選項D正確故選:D.9、B【解析】求導函數(shù),分析單調性即可求解最小值【詳解】由,得,當時,,單調遞減;當時,,單調遞增∴當時,取得最小值,且最小值為故選:B.10、C【解析】建立空間直角坐標系,分別得到,然后根據空間向量夾角公式計算即可.【詳解】以過點且垂直于平面的直線為軸,直線,分別為軸,軸,建立如圖所示的空間直角坐標系.不妨設,則根據題意可得,,,,所以,,設異面直線與所成角為,則.故選:C.11、A【解析】根據題意,分2種情況討論:①、甲是最后一名,則乙可以為第二、三、四名,剩下的三人安排在其他三個名次,②、甲不是最后一名,甲乙需要排在第二、三、四名,剩下的三人安排在其他三個名次,由加法原理計算可得答案【詳解】根據題意,甲乙都沒有得到冠軍,而乙不是最后一名,分2種情況討論:①甲是最后一名,則乙可以為第二、三、四名,即乙有3種情況,剩下的三人安排在其他三個名次,有種情況,此時有種名次排列情況;②甲不是最后一名,甲乙需要排在第二、三、四名,有種情況,剩下的三人安排在其他三個名次,有種情況,此時有種名次排列情況;則一共有種不同的名次情況,故選:A12、C【解析】設圓的半徑為,根據已知條件可得出關于的方程,求出正數(shù)的值,即可得出拋物線的方程.【詳解】設圓的半徑為,拋物線的準線方程為,由勾股定理可得,因為,將代入拋物線方程得,可得,不妨設點,則,所以,,解得,因此,拋物線的方程為.故選:C.二、填空題:本題共4小題,每小題5分,共20分。13、①.②.【解析】第一空:由,代入已知條件,即可解得結果;第二空:由與關系可推導出之間的關系,再由遞推公式即可求出通項公式.【詳解】,可得由,可知時,故時即可化為又故數(shù)列是首項為公比為2的等比數(shù)列,故數(shù)列的通項公式故答案為:①;②14、##【解析】根據直線的傾斜角可得答案.【詳解】直線是與軸平行的直線,直線的斜率為1,即與軸的夾角為角,故直線與直線的夾角大小等于.故答案為:.15、38【解析】根據數(shù)陣的規(guī)律求得正確答案.【詳解】數(shù)陣第行有個數(shù),第行有個數(shù),并且數(shù)字從開始,每次遞增.前行共有個數(shù),第行從左向右的最后一個數(shù)是,所以第行從左向右的第個數(shù)為.故答案為:16、【解析】直接利用求平均數(shù)的公式即可求解.【詳解】由已知得數(shù)據的平均數(shù)為,故答案為:.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)證明見解析,;(2).【解析】(1)由得是公差為2的等差數(shù)列,再由可得答案.(2),分為奇數(shù)、偶數(shù),分組求和即可求解.【小問1詳解】由,得,故是公差為2的等差數(shù)列,故,由,故,于是.【小問2詳解】依題意,,當為偶數(shù)時,故,當為奇數(shù)時,,綜上,.18、(1);(2)存在,最大距離為.,理由見解析【解析】(1)根據離心率及短軸長求橢圓參數(shù),即可得橢圓方程.(2)根據直線與橢圓的位置關系,將問題轉為平行于直線且與橢圓相切的切線與直線最大距離,設直線方程聯(lián)立橢圓方程根據求參數(shù),進而判斷點T的存在性,即可求最大距離.【小問1詳解】由題設知:且,又,∴,故橢圓C的方程為.小問2詳解】聯(lián)立直線與橢圓,可得:,∴,即直線與橢圓相離,∴只需求平行于直線且與橢圓相切的切線與直線最大距離即為所求,令平行于直線且與橢圓相切的直線為,聯(lián)立橢圓,整理可得:,∴,可得,當,切線為,其與直線距離為;當,切線為,其與直線距離為;綜上,時,與橢圓切點與直線距離最大為.19、(1)證明見解析(2)存在,點E為線段中點【解析】(1)通過作輔助線結合面面垂直的性質證明側面,從而證明結論;(2)建立空間直角坐標系,求出相關點的坐標,再求相關的向量坐標,求平面的法向量,利用向量的夾角公式求得答案.【小問1詳解】證明:連接交于點,因,則由平面?zhèn)让?,且平面?zhèn)让?,得平面,又平面,所以三棱柱是直三棱柱,則底面ABC,所以.又,從而側面,又側面,故.【小問2詳解】由(1).平面,則直線與平面所成的角,所以,又,所以假設在線段上是否存在一點E,使得二面角的大小為,由是直三棱柱,所以以點A為原點,以AC、所在直線分別為x,z軸,以過A點和AC垂直的直線為y軸,建立空間直角坐標系,如圖所示,則,且設,,得所以,設平面的一個法向量,由,得:,取,由(1)知平面,所以平面的一個法向量,所以,解得,∴點E為線段中點時,二面角的大小為.20、(1)證明見解析(2)【解析】(1)由勾股定理以及等腰三角形的性質得出,,再由線面垂直的判定證明即可;(2)以點為坐標原點,建立空間直角坐標系,由向量法得出面面角.【小問1詳解】設,則,,平面平面,連接,,,,,即又,平面ABC【小問2詳解】,以點為坐標原點,建立如下圖所示的空間直角坐標系設平面的法向量為,平面的法向量為,令,則同理可得,又二面角為鈍角,故二面角的余弦值為.21、(1)(2)8【解析】(1)根據雙曲線的定義即可得出答案;(2)可設直線的方程為,則直線的方程為,由,求得,同理求得,從而可求得的值,再結合基本不等式即可得出答案.【小問1詳解】解:設,則,等價于,曲線為以為焦點的雙曲線,且實軸長為2,焦距為,故曲線的方程為:;【小問2詳解】解:由題意可得直線的斜率存在且不為0,可設直線的方程為,則直線的方程為,由,得,所以,同理可得,,所以,,當且僅
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年教師職稱考試(特殊教育)歷年參考題庫含答案詳解
- 2025康復醫(yī)學科三基考試題庫及答案
- 2025年安全生產事故案例分析及事故處理流程培訓試卷及答案
- 消防安全工作自查報告
- 2025年安全生產月電氣測試試題及答案
- 工業(yè)機器人系統(tǒng)操作員(三級)職業(yè)鑒定理論考試題及答案(新版)
- 2025年人工智能應用技術考試試卷及答案
- 建設工程施工合同糾紛要素式起訴狀模板要素清晰無混淆
- 2026年動物園管理提升
- 2026 年無子女離婚協(xié)議書正規(guī)模板
- JGJ256-2011 鋼筋錨固板應用技術規(guī)程
- 上海建橋學院簡介招生宣傳
- 《智慧教育黑板技術規(guī)范》
- 《電力建設安全工作規(guī)程》-第1部分火力發(fā)電廠
- 歌曲《我會等》歌詞
- 八年級物理上冊期末測試試卷-附帶答案
- 小學英語五年級上冊Unit 5 Part B Let's talk 教學設計
- 老年癡呆科普課件整理
- 學生校服供應服務實施方案
- GB/T 22900-2022科學技術研究項目評價通則
- 自動控制系統(tǒng)的類型和組成
評論
0/150
提交評論