甘肅省蘭州市第四中學(xué)2025屆高二數(shù)學(xué)第一學(xué)期期末質(zhì)量檢測(cè)模擬試題含解析_第1頁
甘肅省蘭州市第四中學(xué)2025屆高二數(shù)學(xué)第一學(xué)期期末質(zhì)量檢測(cè)模擬試題含解析_第2頁
甘肅省蘭州市第四中學(xué)2025屆高二數(shù)學(xué)第一學(xué)期期末質(zhì)量檢測(cè)模擬試題含解析_第3頁
甘肅省蘭州市第四中學(xué)2025屆高二數(shù)學(xué)第一學(xué)期期末質(zhì)量檢測(cè)模擬試題含解析_第4頁
甘肅省蘭州市第四中學(xué)2025屆高二數(shù)學(xué)第一學(xué)期期末質(zhì)量檢測(cè)模擬試題含解析_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費(fèi)閱讀

付費(fèi)下載

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

甘肅省蘭州市第四中學(xué)2025屆高二數(shù)學(xué)第一學(xué)期期末質(zhì)量檢測(cè)模擬試題注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)填寫在答題卡上。2.回答選擇題時(shí),選出每小題答案后,用鉛筆把答題卡上對(duì)應(yīng)題目的答案標(biāo)號(hào)涂黑,如需改動(dòng),用橡皮擦干凈后,再選涂其它答案標(biāo)號(hào)?;卮鸱沁x擇題時(shí),將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知拋物線的焦點(diǎn)恰為雙曲線的一個(gè)頂點(diǎn),的另一頂點(diǎn)為,與在第一象限內(nèi)的交點(diǎn)為,若,則直線的斜率為()A. B.C. D.2.如圖所示,在平行六面體中,,,,點(diǎn)是的中點(diǎn),點(diǎn)是上的點(diǎn),且,則向量可表示為()A. B.C. D.3.已知圓,圓相交于P,Q兩點(diǎn),其中,分別為圓和圓的圓心.則四邊形的面積為()A.3 B.4C.6 D.4.已知,,若,則實(shí)數(shù)的值為()A. B.C. D.5.拋物線的焦點(diǎn)到準(zhǔn)線的距離()A.4 B.C.2 D.6.若x,y滿足約束條件,則的最大值為()A.2 B.3C.4 D.57.如圖,樣本和分別取自兩個(gè)不同的總體,它們的平均數(shù)分別為和,標(biāo)準(zhǔn)差分別為和,則()AB.C.D.8.已知拋物線,,點(diǎn)在拋物線上,記點(diǎn)到直線的距離為,則的最小值是()A.5 B.6C.7 D.89.若直線被圓截得的弦長(zhǎng)為,則的最小值為()A. B.C. D.10.已知A為拋物線C:y2=2px(p>0)上一點(diǎn),點(diǎn)A到C的焦點(diǎn)的距離為12,到y(tǒng)軸的距離為9,則p=()A.2 B.3C.6 D.911.已知等差數(shù)列,且,則()A.3 B.5C.7 D.912.設(shè)太陽光線垂直于平面,在陽光下任意轉(zhuǎn)動(dòng)棱長(zhǎng)為一個(gè)單位的立方體,則它在平面上的投影面積的最大值是()A.1 B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.若點(diǎn)到點(diǎn)的距離比它到定直線的距離小1,則點(diǎn)滿足的方程為_____________14.設(shè)點(diǎn)是雙曲線上的一點(diǎn),、分別是雙曲線的左、右焦點(diǎn),已知,且,則雙曲線的離心率為________15.命題“,”為假命題,則實(shí)數(shù)a的取值范圍是______16.已知等差數(shù)列的前n項(xiàng)和為,,,則______三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知數(shù)列是遞增的等比數(shù)列,滿足,(1)求數(shù)列的通項(xiàng)公式;(2)若,求數(shù)列的前n項(xiàng)和18.(12分)已知向量,.(1)計(jì)算和;(2)求.19.(12分)已知函數(shù).(1)求函數(shù)的極值;(2)若對(duì)恒成立,求實(shí)數(shù)a的取值范圍.20.(12分)在平面直角坐標(biāo)系xOy中,已知橢圓C:的焦距為4,且過點(diǎn).(1)求橢圓C的方程;(2)設(shè)橢圓C的上頂點(diǎn)為B,右焦點(diǎn)為F,直線l與橢圓交于M,N兩點(diǎn),問是否存在直線l,使得F為的垂心(高的交點(diǎn)),若存在,求出直線l的方程:若不存在,請(qǐng)說明理由.21.(12分)已知橢圓的左,右焦點(diǎn)為,橢圓的離心率為,點(diǎn)在橢圓C上(1)求橢圓C的方程;(2)點(diǎn)T為橢圓C上的點(diǎn),若點(diǎn)T在第一象限,且與x軸垂直,過T作兩條斜率互為相反數(shù)的直線分別與橢圓C交于點(diǎn)M,N,探究直線的斜率是否為定值?若為定值,請(qǐng)求之;若不為定值,請(qǐng)說明理由22.(10分)如圖1,在邊長(zhǎng)為4的等邊三角形ABC中,D,E,F(xiàn)分別是AB,AC,BC的中點(diǎn),沿DE把折起,得到如圖2所示的四棱錐.(1)證明:平面.(2)若二面角的大小為60°,求平面與平面的夾角的大小.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】根據(jù)題意,列出的方程組,解得,再利用斜率公式即可求得結(jié)果.【詳解】因?yàn)閽佄锞€的焦點(diǎn),由題可知;又點(diǎn)在拋物線上,故可得;又,聯(lián)立方程組可得,整理得,解得(舍)或,此時(shí),又,故直線的斜率為.故選:D.2、D【解析】根據(jù)空間向量加法和減法的運(yùn)算法則,以及向量的數(shù)乘運(yùn)算即可求解.【詳解】解:因?yàn)樵谄叫辛骟w中,,,,點(diǎn)是的中點(diǎn),點(diǎn)是上的點(diǎn),且,所以,故選:D.3、A【解析】求得,由此求得四邊形的面積.【詳解】圓的圓心為,半徑;圓的圓心為,所以,由、兩式相減并化簡(jiǎn)得,即直線的方程為,到直線的距離為,所以,所以四邊形的面積為.故選:A4、A【解析】由,得,從而可得答案.【詳解】解:因?yàn)椋?,即,解?故選:A.5、A【解析】寫出拋物線的標(biāo)準(zhǔn)方程,即可確定焦點(diǎn)到準(zhǔn)線的距離.【詳解】由題設(shè),拋物線的標(biāo)準(zhǔn)方程為,則,∴焦點(diǎn)到準(zhǔn)線的距離為4.故選:A.6、C【解析】畫出約束條件的可行域,利用目標(biāo)函數(shù)的幾何意義即可求解【詳解】作出可行域如圖所示,把目標(biāo)函數(shù)轉(zhuǎn)化為,平移,經(jīng)過點(diǎn)時(shí),縱截距最大,所以的最大值為4.故選:C7、B【解析】直接根據(jù)圖表得到答案.【詳解】根據(jù)圖表:樣本數(shù)據(jù)均小于等于10,樣本數(shù)據(jù)均大于等于10,故;樣本數(shù)據(jù)波動(dòng)大于樣本數(shù)據(jù),故.故選:B.8、D【解析】先求出拋物線的焦點(diǎn)和準(zhǔn)線,利用拋物線的定義將轉(zhuǎn)化為的距離,即可求解.【詳解】由已知得拋物線的焦點(diǎn)為,準(zhǔn)線方程為,設(shè)點(diǎn)到準(zhǔn)線的距離為,則,則由拋物線的定義可知∵,當(dāng)點(diǎn)、、三點(diǎn)共線時(shí)等號(hào)成立,∴,故選:.9、D【解析】先根據(jù)已知條件得出,再利用基本不等式求的最小值即可.【詳解】圓的標(biāo)準(zhǔn)方程為,圓心為,半徑為,若直線被截得弦長(zhǎng)為,說明圓心在直線:上,即,即,∴,當(dāng)且僅當(dāng),即時(shí),等號(hào)成立故選:D.【點(diǎn)睛】本題主要考查利用基本不等式求最值,本題關(guān)鍵是求出,屬常規(guī)考題.10、C【解析】利用拋物線的定義建立方程即可得到答案.【詳解】設(shè)拋物線的焦點(diǎn)為F,由拋物線的定義知,即,解得.故選:C.【點(diǎn)晴】本題主要考查利用拋物線的定義計(jì)算焦半徑,考查學(xué)生轉(zhuǎn)化與化歸思想,是一道容易題.11、B【解析】根據(jù)等差數(shù)列的性質(zhì)求得正確答案.【詳解】由于數(shù)列是等差數(shù)列,所以.故選:B12、C【解析】確定正方體投影面積最大時(shí),是投影面與平面AB'C平行,從而求出投影面積的最大值.【詳解】設(shè)正方體投影最大時(shí),是投影面與平面AB'C平行,三個(gè)面的投影為兩個(gè)全等的菱形,其對(duì)角線為,即投影面上三條對(duì)角線構(gòu)成邊長(zhǎng)為的等邊三角形,如圖所示,所以投影面積為故選:C二、填空題:本題共4小題,每小題5分,共20分。13、【解析】根據(jù)拋物線的定義可得動(dòng)點(diǎn)的軌跡方程【詳解】點(diǎn)到點(diǎn)的距離比它到直線的距離少1,所以點(diǎn)到點(diǎn)的距離與到直線的距離相等,所以其軌跡為拋物線,焦點(diǎn)為,準(zhǔn)線為,所以方程為,故答案為:14、【解析】由雙曲線的定義可求得、,利用勾股定理可得出關(guān)于、的齊次等式,進(jìn)而可求得該雙曲線的離心率.【詳解】由雙曲線定義可得,故,由勾股定理可得,即,可得,因此,該雙曲線的離心率為.故答案為:.15、【解析】寫出原命題的否定,再利用二次型不等式恒成立求解作答.【詳解】因命題“,”為假命題,則命題“,”為真命題,當(dāng)時(shí),恒成立,則,當(dāng)時(shí),必有,解得,所以實(shí)數(shù)a的取值范圍是.故答案為:16、-1【解析】由已知及等差數(shù)列通項(xiàng)公式、前n項(xiàng)和公式,列方程求基本量即可.【詳解】若公差為,則,可得.故答案為:.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】(1)由等比數(shù)列的通項(xiàng)公式計(jì)算基本量從而得出的通項(xiàng)公式;(2)由(1)可得,再由裂項(xiàng)相消法求和即可.【小問1詳解】設(shè)等比數(shù)列的公比為q,所以有,,聯(lián)立兩式解得或又因?yàn)閿?shù)列是遞增的等比數(shù)列,所以,所以數(shù)列的通項(xiàng)公式為;【小問2詳解】∵,∴,∴18、(1),;(2).【解析】(1)利用空間向量的坐標(biāo)運(yùn)算可求得的坐標(biāo),利用向量的模長(zhǎng)公式可求得的值;(2)計(jì)算出,結(jié)合的取值范圍可求得結(jié)果.【詳解】(1),;(2),,因此,.【點(diǎn)睛】本題考查空間向量的坐標(biāo)運(yùn)算,同時(shí)也考查了利用空間向量的數(shù)量積計(jì)算向量的夾角,考查計(jì)算能力,屬于基礎(chǔ)題.19、(1)極大值為,無極小值(2)【解析】(1)求函數(shù)的導(dǎo)數(shù),根據(jù)導(dǎo)數(shù)的正負(fù)判斷極值點(diǎn),代入原函數(shù)計(jì)算即可;(2)將變形,即對(duì)恒成立,然后構(gòu)造函數(shù),利用求導(dǎo)判定函數(shù)的單調(diào)性,進(jìn)而確定實(shí)數(shù)a的取值范圍..【小問1詳解】對(duì)函數(shù)求導(dǎo)可得:,可知當(dāng)時(shí),時(shí),,即可知在上單調(diào)遞增,在上單調(diào)遞減由上可知,的極大值為,無極小值【小問2詳解】由對(duì)恒成立,當(dāng)時(shí),恒成立;當(dāng)時(shí),對(duì)恒成立,可變形為:對(duì)恒成立,令,則;求導(dǎo)可得:由(1)知即恒成立,當(dāng)時(shí),,則在上單調(diào)遞增;又,因,故,,所以在上恒成立,當(dāng)時(shí),令,得,當(dāng)時(shí),在上單調(diào)遞增,當(dāng)時(shí),在上單調(diào)遞減,從而可知的最大值為,即,因此,對(duì)都有恒成立,所以,實(shí)數(shù)a的取值范圍是.20、(1)(2)存在:【解析】(1)根據(jù)題意,列出關(guān)于a,b,c的關(guān)系,計(jì)算求值,即可得答案.(2)由(1)可得B、F點(diǎn)坐標(biāo),可得直線BF的斜率,根據(jù)F為垂心,可得,可得直線l的斜率,設(shè)出直線l的方程,與橢圓聯(lián)立,根據(jù)韋達(dá)定理,結(jié)合垂心的性質(zhì),列式求解,即可得答案.【小問1詳解】因?yàn)榻咕酁?,所以,即,又過點(diǎn),所以,又,聯(lián)立求得,所以橢圓C的方程為【小問2詳解】由(1)可得,所以,因?yàn)镕為垂心,直線BF與直線l垂直,所以,則,即直線l的斜率為1,設(shè)直線l的方程為,,與橢圓聯(lián)立得,,所以,因?yàn)镕為垂心,所以直線BN與直線MF垂直,所以,即,又,所以,即,所以,解得或,由,解得,又時(shí),直線l過點(diǎn)B,不符合題意,所以,所以存在直線l:,滿足題意.21、(1);(2)直線的斜率為定值,且定值為.【解析】(1)根據(jù)橢圓的離心率及所過的點(diǎn)求出橢圓參數(shù)a、b,即可得橢圓標(biāo)準(zhǔn)方程.(2)由題設(shè)得,法一:設(shè)為,聯(lián)立橢圓方程應(yīng)用韋達(dá)定理求M坐標(biāo),根據(jù)與斜率關(guān)系求N的坐標(biāo),應(yīng)用兩點(diǎn)式求斜率;法二:設(shè)為,,聯(lián)立橢圓方程,應(yīng)用韋達(dá)定理及得到關(guān)于參數(shù)m、k的方程,即可判斷是否為定值.【小問1詳解】由題意,則,又,所以橢圓C方程為,代入有,解得,所以,故橢圓的標(biāo)準(zhǔn)方程為;【小問2詳解】由題設(shè)易知:,法一:設(shè)直線為,由,消去y,整理得,因?yàn)榉匠逃幸粋€(gè)根為,所以M的橫坐標(biāo)為,縱坐標(biāo),故M為,用代替k,得N為,所以,故直線的斜率為定值法二:由已知直線的斜率存在,可設(shè)直線為,,由,消去y,整理得,所以,而,又,代入整理得,所以,即,若,則直線過點(diǎn)T,不合題意,所以.即,故直線的斜率為定值.【點(diǎn)睛】關(guān)鍵點(diǎn)點(diǎn)睛:第二問,設(shè)直線方程并聯(lián)立橢圓方程,應(yīng)用韋達(dá)定理及得到關(guān)于直線斜率的方M、N程,或求出的坐標(biāo),應(yīng)用兩點(diǎn)式求斜率.22、(1)證明見解析;(2).【解析】(1)由結(jié)合線面平行的判定即可推理作答.(2)取DE的中點(diǎn)M,連接,F(xiàn)M,證明平面平面,再建立空間直角坐標(biāo)系,借助空間向量推理、計(jì)算作答.【小問1詳解】在中,因?yàn)镋,F(xiàn)分別是AC,BC的中點(diǎn),所以,則圖2中,,而平面,平面,所以平面.【小問2詳解】依題意,是正三角形,四邊形是菱形,取DE的中點(diǎn)M,連接,F(xiàn)M,如圖,則,,即是二面角的平面角,,取中點(diǎn)N,連接,則有,在中,由余弦定理得:,于是有,,即,而,,,平面,則平面,又平面,從而有平面平面,因平面平面,平面,因此,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論