廣東省中山一中豐山學部2025屆高二數(shù)學第一學期期末經(jīng)典模擬試題含解析_第1頁
廣東省中山一中豐山學部2025屆高二數(shù)學第一學期期末經(jīng)典模擬試題含解析_第2頁
廣東省中山一中豐山學部2025屆高二數(shù)學第一學期期末經(jīng)典模擬試題含解析_第3頁
廣東省中山一中豐山學部2025屆高二數(shù)學第一學期期末經(jīng)典模擬試題含解析_第4頁
廣東省中山一中豐山學部2025屆高二數(shù)學第一學期期末經(jīng)典模擬試題含解析_第5頁
已閱讀5頁,還剩11頁未讀 繼續(xù)免費閱讀

付費下載

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

廣東省中山一中豐山學部2025屆高二數(shù)學第一學期期末經(jīng)典模擬試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.若,則實數(shù)的取值范圍是()A. B.C. D.2.《周髀算經(jīng)》中有這樣一個問題:冬至、小寒、大寒、立春、雨水、驚蟄、春分、清明、谷雨、立夏、小滿、芒種這十二個節(jié)氣,自冬至日起,其日影長依次成等差數(shù)列,立春當日日影長為9.5尺,立夏當日日影長為2.5尺,則冬至當日日影長為()A.12.5尺 B.13尺C.13.5尺 D.14尺3.某商場開通三種平臺銷售商品,五一期間這三種平臺的數(shù)據(jù)如圖1所示.該商場為了解消費者對各平臺銷售方式的滿意程度,用分層抽樣的方法抽取了6%的顧客進行滿意度調查,得到的數(shù)據(jù)如圖2所示.下列說法正確的是()A.樣本中對平臺一滿意的消費者人數(shù)約700B.總體中對平臺二滿意的消費者人數(shù)為18C.樣本中對平臺一和平臺二滿意的消費者總人數(shù)為60D.若樣本中對平臺三滿意消費者人數(shù)為120,則4.若點,在拋物線上,是坐標原點,若等邊三角形的面積為,則該拋物線的方程是()A. B.C. D.5.設雙曲線與冪函數(shù)的圖象相交于,且過雙曲線的左焦點的直線與函數(shù)的圖象相切于,則雙曲線的離心率為()A. B.C. D.6.設,直線與直線平行,則()A. B.C. D.7.阿基米德(公元前287年~公元前212年)不僅是著名的物理學家,也是著名的數(shù)學家,他利用“逼近法”得到的橢圓的面積除以圓周率等于橢圓的長半軸長與短半軸長的乘積.若橢圓的對稱軸為坐標軸,焦點在軸上,且橢圓的離心率為,面積為,則橢圓的標準方程為()A. B.C. D.8.雙曲線與橢圓的焦點相同,則等于()A.1 B.C.1或 D.29.下列直線中,傾斜角為45°的是()A. B.C. D.10.一直線過點,則此直線的傾斜角為()A.45° B.135°C.-45° D.-135°11.對于函數(shù),下列說法正確的是()A.的單調減區(qū)間為B.設,若對,使得成立,則C.當時,D.若方程有4個不等的實根,則12.已知橢圓的中心為,一個焦點為,在上,若是正三角形,則的離心率為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知拋物線的焦點為F,A為拋物線C上一點.以F為圓心,F(xiàn)A為半徑的圓交拋物線C的準線于B,D兩點,A,F(xiàn),B三點共線,且,則______14.數(shù)據(jù)6,8,9,10,7的方差為______15.若“x2-2x-8>0”是“x<m”的必要不充分條件,則m最大值為________16.已知數(shù)列滿足,則其通項公式_______三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知數(shù)列與滿足(1)若,且,求數(shù)列的通項公式;(2)設的第k項是數(shù)列的最小項,即恒成立.求證:的第k項是數(shù)列的最小項;(3)設.若存在最大值M與最小值m,且,試求實數(shù)的取值范圍18.(12分)已知數(shù)列的前項和為,且,,數(shù)列是公差不為0的等差數(shù)列,滿足,且,,成等比數(shù)列.(1)求數(shù)列和通項公式;(2)設,求數(shù)列的前項和.19.(12分)已知橢圓的一個頂點為,離心率為(1)求橢圓C的方程;(2)若直線l與橢圓C交于M、N兩點,直線BM與直線BN的斜率之積為,證明直線l過定點并求出該定點坐標20.(12分)已知橢圓的焦距為4,其短軸的兩個端點與長軸的一個端點構成正三角形.(1)求橢圓C的標準方程;(2)設斜率為k的直線與橢圓C交于兩點,O為坐標原點,若的面積為定值,判斷是否為定值,如果是,求出該定值;如果不是,說明理由.21.(12分)中心在原點,焦點在x軸上的一橢圓與一雙曲線有共同的焦點F1,F(xiàn)2,且|F1F2|=,橢圓的長半軸長與雙曲線半實軸長之差為4,離心率之比為3∶7(1)求這兩曲線方程;(2)若P為這兩曲線的一個交點,求△F1PF2的面積22.(10分)已知拋物線的焦點為F,以F和準線上的兩點為頂點的三角形是邊長為的等邊三角形,過的直線交拋物線E于A,B兩點(1)求拋物線E的方程;(2)是否存在常數(shù),使得,如果存在,求的值,如果不存在,請說明理由;(3)證明:內切圓的面積小于

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】由題意可知且,構造函數(shù),可得出,由函數(shù)的單調性可得出,利用導數(shù)求出函數(shù)的最小值,可得出關于的不等式,由此可解得實數(shù)的取值范圍.【詳解】因為,則且,由已知可得,構造函數(shù),其中,,所以,函數(shù)為上的增函數(shù),由已知,所以,,可得,構造函數(shù),其中,則.當時,,此時函數(shù)單調遞減,當時,,此時函數(shù)單調遞增,則,所以,,解得.故選:B.2、B【解析】設十二節(jié)氣自冬至日起的日影長構成的等差數(shù)列為,利用等差數(shù)列的性質即可求解.【詳解】設十二節(jié)氣自冬至日起的日影長構成的等差數(shù)列為,則立春當日日影長為,立夏當日日影長為,故所以冬至當日日影長為.故選:B3、C【解析】根據(jù)扇形圖和頻率分布直方圖判斷.【詳解】對于A:樣本中對平臺一滿意的人數(shù)為,故選項A錯誤;對于B:總體中對平臺二滿意的人數(shù)約為,故選項B錯誤;對于C:樣本中對平臺一和平臺二滿意的總人數(shù)為:,故選項C正確:對于D:對平臺三的滿意率為,所以,故選項D錯誤故選:C4、A【解析】根據(jù)等邊三角形的面積求得邊長,根據(jù)角度求得點的坐標,代入拋物線方程求得的值.【詳解】設等邊三角形的邊長為,則,解得根據(jù)拋物線的對稱性可知,且,設點在軸上方,則點的坐標為,即,將代入拋物線方程得,解得,故拋物線方程為故選:A5、B【解析】設直線方程為,聯(lián)立,利用判別式可得,進而可求,再結合雙曲線的定義可求,即得.【詳解】可設直線方程為,聯(lián)立,得,由題意得,∴,,∴,即,由雙曲線定義得,.故選:B.6、C【解析】根據(jù)直線平行求解即可.【詳解】因為直線與直線平行,所以,即,經(jīng)檢驗,滿足題意.故選:C7、C【解析】由題意,設出橢圓的標準方程為,然后根據(jù)橢圓的離心率以及橢圓面積列出關于的方程組,求解方程組即可得答案【詳解】由題意,設橢圓的方程為,由橢圓的離心率為,面積為,∴,解得,∴橢圓的方程為,故選:C.8、A【解析】根據(jù)雙曲線方程形式確定焦點位置,再根據(jù)半焦距關系列式求參數(shù).【詳解】因為雙曲線的焦點在軸上,所以橢圓焦點在軸上,依題意得解得.故選:A9、C【解析】由直線傾斜角得出直線斜率,再由直線方程求出直線斜率,即可求解.【詳解】由直線傾斜角為45°,可知直線的斜率為,對于A,直線斜率為,對于B,直線無斜率,對于C,直線斜率,對于D,直線斜率,故選:C10、A【解析】根據(jù)斜率公式求得直線的斜率,得到,即可求解.【詳解】設直線的傾斜角為,由斜率公式,可得,即,因為,所以,即此直線的傾斜角為.故選:A.11、B【解析】函數(shù),,,,,利用導數(shù)研究函數(shù)的單調性以及極值,畫出圖象A.結合圖象可判斷出正誤;B.設函數(shù)的值域為,函數(shù),的值域為.若對,,使得成立,可得.分別求出,,即可判斷出正誤C.由函數(shù)在單調遞減,可得函數(shù)在單調遞增,由此即可判斷出正誤;D.方程有4個不等的實根,則,且時,有2個不等的實根,由圖象即可判斷出正誤;【詳解】函數(shù),,,,可得函數(shù)在上單調遞減,在上單調遞減,在上單調遞增,當時,,由此作出函數(shù)的大致圖象,如圖示:A.由上述分析結合圖象,可得A不正確B.設函數(shù)的值域為,函數(shù),的值域為,對,,.,,由,若對,,使得成立,則,所以,因此B正確C.由函數(shù)在單調遞減,可得函數(shù)在單調遞增,因此當時,,即,因此C不正確;D.方程有4個不等的實根,則,且時,有2個不等的實根,結合圖象可知,因此D不正確故選:B12、D【解析】根據(jù)是正三角形可得的坐標,代入方程后可求離心率.【詳解】不失一般性,可設橢圓的方程為:,為半焦距,為右焦點,因為且,故,故,,整理得到,故,故選:D.二、填空題:本題共4小題,每小題5分,共20分。13、2【解析】求得拋物線的焦點和準線方程,由,,三點共線,推得,由三角形的中位線性質可得到準線的距離,可得的值【詳解】拋物線的焦點為,,準線方程為,因為,,三點共線,可得為圓的直徑,如圖示:設準線交x軸于E,所以,則,由拋物線的定義可得,又是的中點,所以到準線的距離為,故答案為:214、2【解析】首先求出數(shù)據(jù)的平均值,再應用方差公式求它們的方差.【詳解】由題設,平均值為,∴方差.故答案為:2.15、【解析】解不等式,得到或,,根據(jù)必要不充分條件,得到是A的真子集,從而求出,得到m的最大值.【詳解】,解得:或,所以記或,;若“x2-2x-8>0”是“x<m”的必要不充分條件,則是A的真子集故,所以m最大值為故答案為:-216、【解析】構造法可得,由等比數(shù)列的定義寫出的通項公式,進而可得.【詳解】令,則,又,∴,故,而,∴是公比為,首項為,則,∴.故答案為:.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)證明見解析.(3)【解析】(1)由已知關系得出是等差數(shù)列及公差,然后可得通項公式;(2)由已知關系式,利用累加法證明對任意的,恒成立,即可得(3)由累加法求得通項公式,然后確定的奇數(shù)項和偶數(shù)項的單調性,得出數(shù)列的最大項和最小項,再利用已知范圍解得的范圍【小問1詳解】由已知,是等差數(shù)列,公差為6,所以;【小問2詳解】對任意的,恒成立,而恒成立,若,則,恒成立,同理若,也有恒成立,所以對任意的,恒成立,即是最小項;【小問3詳解】時,,所以,也適合此式所以,若,則,,,即,,若,由于,且是正負相間,因此無最大項也無最小項因此有,所以的奇數(shù)項數(shù)列是遞增數(shù)列,且,,的偶數(shù)項數(shù)列是遞減數(shù)列,且,,所以的最大值是,最小項是,,由,又,所以18、(1),(2)【解析】(1)根據(jù),求出是以1為首項,3為公比的等比數(shù)列,求出的通項公式,求出的公差,進而求出的通項公式;(2)分組求和.【小問1詳解】因為①,所以當時,②,①-②得:,即③,令得:,滿足③,綜上:是以1為首項,3為公比的等比數(shù)列,故,設的公差為d,則,因為,所以,解得:或0(舍去),所以【小問2詳解】,則19、(1);(2)答案見解析,直線過定點.【解析】(1)首先根據(jù)頂點為得到,再根據(jù)離心率為得到,從而得到橢圓C的方程.(2)設,,,與橢圓聯(lián)立得到,利用直線BM與直線BN的斜率之積為和根系關系得到,從而得到直線恒過的定點.【詳解】(1)一個頂點為,故,又,即,所以故橢圓的方程為(2)若直線l的斜率不存在,設,,此時,與題設矛盾,故直線l斜率必存在設,,,聯(lián)立得,∴,∵,即∴,化為,解得或(舍去),即直線過定點【點睛】方法點睛:定點問題,一般從三個方法把握:(1)從特殊情況開始,求出定點,再證明定點、定值與變量無關;(2)直接推理,計算,在整個過程找到參數(shù)之間的關系,代入直線,得到定點.20、(1)(2)是定值,定值為6【解析】(1)根據(jù)題意條件,可直接求出的值,然后再利用條件中、的關系,借助即可求解出、的值,從而得到橢圓方程;(2)根據(jù)已知條件設出、所在直線方程,然后與橢圓聯(lián)立方程,分別表示出根與系數(shù)的關系,再表示出弦長關系,再計算點到直線的距離,把面積用和的式子表示出來,通過給出的面積的值,找到和的等量關系,將等量關系帶入到利用跟與系數(shù)關系組合成的中即可得到答案.【小問1詳解】由題意:,由知:,故橢圓C的標準方程為,【小問2詳解】設:,①橢圓.②聯(lián)立①②得:,,即∴,O到直線l的距離,∴,∴,即,∴.故為定值6.21、(1)橢圓方程為雙曲線方程為;(2)12【解析】(1)根據(jù)半焦距,設橢圓長半軸為a,由離心率之比求出a,進而求出橢圓短半軸的長及雙曲線的虛半軸的長,寫出橢圓和雙曲線的標準方程;(2)由橢圓、雙曲線的定義求出與的長,在三角形中,利用余弦定理求出cos∠的值,進一步求得sin∠的值,代入面積公式得答案試題解析:(1)設橢圓方程為,雙曲線方程為(a,b,m,n>0,且a>b),則解得:a=7,m=3,∴b=6,n=2,∴橢圓方程為雙曲線方程為(2)不妨設F1,F(xiàn)2分別為左、右焦點,P是第一象限的一個交點,則PF1+PF2=14,PF1-PF2=6,∴PF1=10,PF2=4,∴cos∠F1PF2==,∴sin∠F1PF2=.∴S△F1PF2=

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論