版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2024年中考第一次模擬考試(浙江卷)數(shù)學·參考答案第Ⅰ卷一、選擇題(本大題共10個小題,每小題3分,共30分.在每個小題給出的四個選項中,只有一項符合題目要求,請選出并在答題卡上將該項涂黑)12345678910DBCBDCABBA第Ⅱ卷二、填空題(本大題共6小題,每小題3分,共18分)11.212.7213.14.43三、解答題(本大題共8個小題,共72分.解答應寫出文字說明,證明過程或演算步驟)17.【答案】(1);(2)【分析】本題考查了實數(shù)的運算以及解一元一次不等式;(1)分別根據(jù)零指數(shù)冪的定義,絕對值的性質以及二次根式的性質,計算即可;(2)不等式去括號,移項,合并同類項,化系數(shù)為1即可.【詳解】(1)原式;·························································3分(2),去括號,得,移項,得,合并同類項,得.························································6分18.【答案】錯誤步驟的序號為①,解法見詳解.【分析】本題考查檢查解分式方程;錯誤步驟的序號為①,解方程去分母轉化為整式方程,,進而解這個整式方程,最后檢驗,即可求解.【詳解】解:錯誤步驟的序號為①,························································1分去分母得:去括號得:移項得:…③,合并同類項得:…④,························································3分檢驗:當時,,························································5分∴是原分式方程的解.························································6分19.【答案】(1)見解析(2),(3)二,理由見解析【分析】本題考查統(tǒng)計圖分析,涉及中位數(shù)、加權平均數(shù)、眾數(shù),(1)根據(jù)這30名學生第一次競賽成績和第二次競賽成績得分情況統(tǒng)計圖可得橫坐標是89,縱坐標是90的點即代表小松同學的點;(2)根據(jù)平均數(shù)和中位數(shù)的定義可得m和n的值;(3)根據(jù)平均數(shù),眾數(shù)和中位數(shù)進行決策即可.【詳解】(1)解:(1)如圖所示.·······························2分(2),∵第二次競賽獲卓越獎的學生有16人,成績從小到大排列為:90
90
91
91
91
91
92
93
93
94
94
94
95
95
96
98,∴第一和第二個數(shù)是30名學生成績中第15和第16個數(shù),∴,∴,;························································6分(3)可以推斷出第二次競賽中初三年級全體學生的成績水平較高,理由是:第二次競賽學生成績的平均數(shù)、中位數(shù)、眾數(shù)都高于第一次競賽.答:二,第二次競賽學生成績的平均數(shù)、中位數(shù)、眾數(shù)都高于第一次競賽.·············8分20.【答案】任務1:剪掉的正方形的邊長為.任務2:當剪掉的正方形的邊長為時,長方形盒子的側面積最大為.【分析】此題主要考查了一元二次方程和二次函數(shù)的應用,找到關鍵描述語,找到等量關系準確地列出方程和函數(shù)關系式是解決問題的關鍵.任務1:假設剪掉的正方形的邊長為,根據(jù)長方形盒子的底面積為,得方程,解所列方程并檢驗可得;任務2:側面積有最大值,設剪掉的正方形邊長為,盒子的側面積為,利用長方形盒子的側面積為:得出即可.【詳解】解:任務1:設剪掉的正方形的邊長為,則,即,解得(不合題意,舍去),,答:剪掉的正方形的邊長為.························································3分任務2:側面積有最大值.理由如下:設剪掉的小正方形的邊長為,盒子的側面積為,則與的函數(shù)關系為:,即,即,························································6分∴時,.························································8分即當剪掉的正方形的邊長為時,長方形盒子的側面積最大為.21.【答案】(1)支點C離桌面l的高度;(2)面板上端E離桌面l的高度是增加了,增加了約【分析】(1)作,先在求出的長,再計算即可得答案;(2)分別求出時和時,的長,相減即可.【詳解】(1)解:如下圖,作,,,,,支點C離桌面l的高度;···············································4分(2),,當時,,························································5分當時,,························································6分,面板上端E離桌面l的高度是增加了,增加了約.···································10分【點睛】本題考查了解直角三角形的應用,解題的關鍵是作輔助線,構造直角三角形.22.【答案】(1)(2)(3)【分析】本題考查了相似三角形的判定與性質、正方形的性質等知識點,掌握相似三角形判定定理的內容是解題關鍵.(1)證可得,結合即可求解;(2)由可得,進一步可得,據(jù)此即可求解;(3)由(1)可得,證得即可求解.【詳解】(1)解:由題意得:∴∴即:解得:························································2分(2)解:∵,∴∴························································3分由(1)可得:∴∴∵,∴························································5分解得:························································6分(3)解:由(1)得:即:解得:························································7分∵,∴∴即:∴整理得:························································8分∵∴,又∴故:························································10分23.【答案】(1)120(2)2(3)(4)見解析,【分析】本題主要考查了垂徑定理在圓中的應用,最后一問由“共頂點,等線段”聯(lián)想到旋轉,是此題的突破口,同時,要注意頂角為的等腰三角形腰和底邊比是固定值.(1)由已知得到垂直平分,故得到,證明為等邊三角形即可得到答案;(2)由于直徑,根據(jù)垂徑定理可以得到是的中點,要求最大值即求最大值,當為直徑時,有最大值,即可得到答案;(3)根據(jù)垂徑定理得到,證明,由(1)得,即可得到答案;(4)將繞A點順時針旋轉至,得到,證明,過A作于G,則,根據(jù)勾股定理證明.【詳解】(1)解:連接,,、,,,,,,,,的度數(shù)為;························································2分(2)解:由題可知,為直徑,且,由垂徑定理可得,,連接,是的中點,,當三點共線時,此時取得最大值,且,的最大值為;························································4分(3)解:連接,,,,平分,,,,,,,;
························································6分(4)證明:由題可得,直徑,垂直平分,如圖4,連接,,則,由(1)得,將繞A點順時針旋轉至,,,,四邊形為圓內接四邊形,,,、D、P三點共線,,························································7分過A作于G,則,,在中,,設,則,,,························································8分,,························································10分為定值.························································12分24.【答案】(1);(2)①,;②的最小值為.【分析】(1)將點、的坐標代入拋物線,利用待定系數(shù)法求得解析式;(2)①由坐標求出解析式,然后根據(jù)四邊形是平行四邊形和得出,再分類討論求得和的坐標;②求出解析式,交點為,再求出坐標,然后由兩點間距離公式求出和長度,因為旋轉不改變長度,所以長度不變,當旋轉到軸上時,此時最短,所以此時等于,然后帶入計算即可.【詳解】(1)解:①∵拋物線交軸于點和點,∴將、坐標代入有,解得∴拋物線的表達式為;························································2分(2)解:∵拋物線的表達式為,∴,設直線的解析式為∵,,∴解得∴直線的解析式為························································3分∵為與軸交點,∴,∴,∵四邊形是平行四邊形∴且,且點在點下方,∵且在軸上∴,∵,∴,或,························································4分若為,,∵,故,若為,,∵,此時,矛盾,舍去綜上,;························································6分②最小值為如圖,設的解析式為∵拋物線交軸于點,∴點的坐標為,將點,、,的坐標代入得解得∴的解析式為與相交于點∴解得所以點的坐標為························································8分設直線的解析式為將點、的坐標代入直線的解析式得解得所以直線的解析式為·····································
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 駐馬店2025年河南駐馬店市平輿縣人民醫(yī)院引進人才30人筆試歷年參考題庫附帶答案詳解
- 金華2025年浙江金華義烏市勘測設計研究院招聘筆試歷年參考題庫附帶答案詳解
- 職業(yè)健康與員工心理健康整合
- 舟山浙江舟山市普陀區(qū)桃花鎮(zhèn)及下屬單位工作人員招聘筆試歷年參考題庫附帶答案詳解
- 甘肅2025年甘肅財貿職業(yè)學院招聘博士研究生15人筆試歷年參考題庫附帶答案詳解
- 清遠廣東清遠市第二中學臨聘教師招聘筆試歷年參考題庫附帶答案詳解
- 畢節(jié)2025年貴州畢節(jié)市七星關區(qū)面向區(qū)內鄉(xiāng)鎮(zhèn)學??颊{教師300人筆試歷年參考題庫附帶答案詳解
- 無錫2025年江蘇無錫市中心血站招聘編外人員2人筆試歷年參考題庫附帶答案詳解
- 德宏2025年云南德宏州檢察機關聘用制書記員考試招聘13人筆試歷年參考題庫附帶答案詳解
- 巴彥淖爾2025年內蒙古巴彥淖爾市五原縣醫(yī)療衛(wèi)生專業(yè)技術人員招聘22人筆試歷年參考題庫附帶答案詳解
- 自平衡多級泵培訓課件
- 晝夜明暗圖課件
- 壓力性尿失禁教學課件
- 凝血六項課件
- 公路施工監(jiān)理工作重點及難點分析
- 2025云南昆明公交集團招聘9人筆試歷年備考題庫附帶答案詳解2套試卷
- 雨課堂在線學堂《大數(shù)據(jù)技術與應用》作業(yè)單元考核答案
- 光伏電纜專業(yè)知識培訓課件
- 養(yǎng)牛場消防知識培訓
- 小兒體液不足的護理措施
- 管控人力成本課件
評論
0/150
提交評論