版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
信號與系統(tǒng)SignalsandSystems吉林大學(xué)PropertiesofLaplacetransform:RightShiftinTimeProperty3:RightshiftintimeProof:Property3:Rightshiftintime(3)Property3:RightshiftintimeSolution:信號與系統(tǒng)SignalsandSystems吉林大學(xué)PropertiesofLaplaceTransform:TimeScalingProperty4:TimescalingProof:信號與系統(tǒng)SignalsandSystems吉林大學(xué)PropertiesofLaplaceTransform:ConvolutionTheoremsProperty5:Convolutioninthet-domainProof:Property5:Convolutioninthet-domainContinued:Property
6:Convolutioninthes-domainProof:信號與系統(tǒng)SignalsandSystems吉林大學(xué)PropertiesofLaplaceTransform:Differentiationinthet-domainProperty7:Differentiationinthet-domainProof:信號與系統(tǒng)SignalsandSystems吉林大學(xué)PropertiesofLaplaceTransform:Integrationinthet-domainProperty8:Integrationinthet-domainProof:Property8:Integrationinthet-domain信號與系統(tǒng)SignalsandSystems吉林大學(xué)PropertiesofLaplaceTransform:DifferentiationandIntegrationinthes-DomainProperty9:Differentiationinthes-domainProof:Property10:Integrationinthes-domainProof:信號與系統(tǒng)SignalsandSystems吉林大學(xué)PropertiesofLaplaceTransform:InitialandFinal-ValuetheoremsProperty11:Initial-valuetheoremProof:Property12:Final-valuetheoremProof:信號與系統(tǒng)SignalsandSystems吉林大學(xué)ComputationoftheInverseLaplaceTransform(Ⅱ)PartialFractionExpansionComputationoftheinverseLaplacetransform(Ⅱ)Partialfractionexpansion(1)Conditions:ComputationoftheinverseLaplacetransform(Ⅱ)Partialfractionexpansion(2)ComputationoftheinverseLaplacetransform(Ⅱ)Partialfractionexpansion(3)信號與系統(tǒng)SignalsandSystems吉林大學(xué)SolvingtheDifferentialEquationsinthes-DomainSolvingthedifferentialequationsinthes-domain[Example]Given:Find:
Solvingthedifferentialequationsinthes-domainSolvingthedifferentialequationsinthes-domainSolvingthedifferentialequationsinthes-domain信號與系統(tǒng)SignalsandSystems吉林大學(xué)Thes-DomainRepresentationsofCircuits(I)Thes-domainrepresentationsofcircuits(I)1Thes-domainequivalentcircuitelementsThesameresistanceThes-domainrepresentationsofcircuits(I)1Thes-domainequivalentcircuitelementsThes-domainimpedanceThes-domainrepresentationsofcircuits(I)1Thes-domainequivalentcircuitelementsThes-domainimpedanceThes-domainrepresentationsofcircuits(I)2TheformsofKVLandKCLinthes-domain信號與系統(tǒng)SignalsandSystems吉林大學(xué)TheBlockDiagramofaSysteminthes-DomainTheblockdiagramofasysteminthes-domainScalarmultiplier1Adder/Subtractor2Theblockdiagramofasysteminthes-domainIntegrator3信號與系統(tǒng)SignalsandSystems吉林大學(xué)TheDefinitionofTransferFunctionanditsSolutionsThedefinitionoftransferfunctionanditssolutionsThetransferfunctionⅠHowtofind21.GiventhesystemdifferentialequationThedefinitionoftransferfunctionanditssolutionsHowtofind21.GiventhesystemdifferentialequationThedefinitionoftransferfunctionanditssolutions2.Giventheimpulseresponseh(t)Thedefinitionoftransferfunctionanditssolutions3.GiventhestructureofthecircuitUsingthedefinitioninthes-domainrepresentationofthecircuit.4.Usingthepole-zeroplot信號與系統(tǒng)SignalsandSystems吉林大學(xué)TheTransferFunctionandthePole-ZeroPlotThetransferfunctionandthepole-zeroplotPolesandzeros1Zeros:Poles:Thetransferfunctionandthepole-zeroplotThepole-zeroplot2Aplotinthecomplexplaneshowingthelocationsofallthepoles(markedby×)andallthezeros(markedby○)iscalledthepole-zeroplot.Zeros:Poles:信號與系統(tǒng)SignalsandSystems吉林大學(xué)ApplicationsofthePole-ZeroPlot:DeterminingtheFormofh(t)Thepoles
beinglocatedintheopen
left-halfcomplexplane1Applicationsofthepole-zeroplot:Determiningtheformofh(t)Thepoles
beinglocatedintheopen
left-halfcomplexplane1Applicationsofthepole-zeroplot:Determiningtheformofh(t)Thepoles
beinglocatedattheorigin2Applicationsofthepole-zeroplot:Determiningtheformofh(t)Thepoles
beinglocatedontheimaginaryaxis3Applicationsofthepole-zeroplot:Determiningtheformofh(t)Thepoles
beinglocatedintheopen
right-halfcomplexplane4Applicationsofthepole-zeroplot:Determiningtheformofh(t)信號與系統(tǒng)SignalsandSystems吉林大學(xué)Time-DomainAnalysisofDiscrete-TimeSystemsDiscrete-TimeSignalsDiscrete-TimeSignalsAdiscrete-timesignalf(k)hasvaluesforsomediscontinuouspointwhilehasnotdefinitionforotherpoints.k—integerDefinitionDiscrete-TimeSignalsAnalyticalmethod:Graphicalmethod:Sequencemethod:k=0RepresentationDiscrete-TimeSignalEnergyandPowerEnergy:Power:OperationofDiscrete-TimeSignalsAddition:Multiplication:Difference:forwarddifference:backwarddifferenceRunningsum:OperationofDiscrete-TimeSignalsTimeshift(m>0)RightshiftLeftshiftTransformationsoftheIndependentVariableOperationofDiscrete-TimeSignalsTimereversalTransformationsoftheIndependentVariablef(-k)isobtainedfromthesignalf(k)
byareflectionaboutk=0.BasicDiscrete-TimeSignalsUnitImpulseSequence(UnitSampleSequence)BasicDiscrete-TimeSignalsUnitStepSequenceBasicDiscrete-TimeSignalsRelationshipbetweend(k)ande(k)BasicDiscrete-TimeSignalsRectangularSequenceBasicDiscrete-TimeSignalsUnilateralexponentialsequenceswithrealvalues:f(k)=ak
(k)(aisarealnumber)BasicDiscrete-TimeSignalsUnitrampsequenceSinusoidalSequencesComplexExponentialSequences:Canda:complexnumbers信號與系統(tǒng)SignalsandSystems吉林大學(xué)RepresentationsofDiscrete-TimeSystemsRepresentationsofDiscrete-TimeSystemsAdiscrete-timesystemisasystemthattransformsdiscrete-timeinputsintodiscrete-timeoutputs.Definitionf(k):inputy(k):outputInput-outputrelation:f(k)→
y(k)RepresentationsofDiscrete-TimeSystemsnth-orderLinearConstant-CoefficientDifferenceEquation:LTISystemsDescribedbyDifferenceEquatioconstantsRepresentationsofDiscrete-TimeSystemsBlockDiagramRepresentationBasicelementsMultiplicationbyacoefficientAdderUnitDelayElementRepresentationsofDiscrete-TimeSystemsInterconnectionsofSystemsSeries(Cascade)interconnectionParallelinterconnectionFeedbackinterconnection信號與系統(tǒng)SignalsandSystems吉林大學(xué)Linearinput/outputdifferenceequationswithconstantcoefficientsInput:f(k)=0fork<0InitialCondition:y(0),y(1),y(2),…,y(n-1)InitialState:y(-1),y(-2),…,y(-n)Linearinput/outputdifferenceequationswithconstantcoefficientsEquation:Solution:Linearinput/outputdifferenceequationswithconstantcoefficientsTheHomogeneousSolutionHomogeneousequation
CharacteristicequationCharacteristicroot
j(j=1,2,3,
,n)HomogeneoussolutionLinearinput/outputdifferenceequationswithconstantcoefficientsTheHomogeneousSolutionExample:y(k)+3y(k-1)+2y(k-2)=f(k),f(k)=2k,k
≥0,y(0)=0,y(1)=2.Findyh(k)
.Characteristicequation:Homogeneousequation
CharacteristicequationCharacteristicroot
j(j=1,2,3,
,n)HomogeneoussolutionLinearinput/outputdifferenceequationswithconstantcoefficientsTheParticularSolutionLinearinput/outputdifferenceequationswithconstantcoefficientsTheParticularSolutionExample:y(k)+3y(k-1)+2y(k-2)=f(k),f(k)=2k,k
≥0,y(0)=0,y(1)=2.Findyp(k),k
≥0.Letyp(k)=P·2k,k
≥0Substitutethesystemequation:信號與系統(tǒng)SignalsandSystems吉林大學(xué)TheZero-InputResponse
and
TheZero-StateResponseTheZero-InputResponse
Characteristicequation
j,(j=1,2,3,
,n)CharacteristicrootZero-InputResponse
yzi
(0),yzi
(1),…,yzi
(n-1)y(-1),y(-2),…,y(-n)
yzi(k)=y(k)-
yzs(k)=y(k),k<0InitialconditionCharacteristicequation:Characteristicroots:Zero-InputResponse:Example:TheZero-InputResponsey(k)+3y(k-1)+2y(k-2)=f(k),f(k)=2kε(k),y(-1)=0,y(-2)=1/2.Findyzi(k),k
≥0.yzi(k)+3yzi(k-1)+2yzi(k-2)=0TheZero-StateResponseCharacteristicequation
j
(j=1,2,3,
,n)Characteristicroot(distinctroots
j
)Zero-StateResponseyzs(-1)=yzs(-2)=…=yzs
(-n)=0Initialstateyzs(0),yzs
(1),…,yzs
(n-1)Initialcondition信號與系統(tǒng)SignalsandSystems吉林大學(xué)TheUnitSampleResponse
and
TheUnitStepResponseTheUnitSampleResponseDefinitionTheunitsampleresponseisthezero-stateresponseofthesystemresultingfromtheapplicationoftheunitpulse
(k).Denotedh(k)Initialstateh(-1)=h(-2)=…=h(-n)=0Initialconditionh(0),h(1),h(2),…,h(n-1)HowtofindSolvingadifferenceequationZ-transformTheUnitSampleResponseDeterminationk<0:
(k)
=0,h(k)=0k=0:
(k)
=1,h(0)——recursionk>0:
(k)
=0,h(k)——solutionofahomogeneousequationLTI
system:LetthenCi:determinedbyh1(1),h1(2),…,h1(n)TheUnitStepResponseDefinitionTheunitstepresponseisthezero-stateresponseofthesystemresultingfromtheapplicationoftheunitstepsequencee
(k).Denotedg(k)Initialstateg(-1)=g(-2)=…=g(-n)=0Relationshipbetweenh(k)andg(k)信號與系統(tǒng)SignalsandSystems吉林大學(xué)ConvolutionSumConvolutionSum
Ingeneral,twodiscrete-timesignalsf1(k)andf2(k)DefinitionExample1:ConvolutionSumConvolution-SumRepresentationofLTIdiscrete-timesystemsThezero-stateresponse:ConvolutionSum:GraphicalRepresentationGraphicalRepresentationoftheconvolutionsumProcedure:Step1.Drawf1(i)andf2(i)Step2.Reverse
f2(i):f2(i)
f2(-i)Step3.Shift
f2(-i)bykpositiontotheright:f2(-i)
f2(k-i)
Step4.Multiplicationoff1(i)withf2(k-i):
f1(i)f2(k-i)
Step5.Summationoftheproductforallvaluesofi
yieldsonevalueofy(k)Step6.Repeatsteps3and5forallvaluesofk信號與系統(tǒng)SignalsandSystems吉林大學(xué)PropertiesoftheConvolutionSumPropertiesoftheConvolutionSumCommutativityProof:PropertiesoftheConvolutionSumAssociativityProof:CascadeinterconnectionofLTIsystemsPropertiesoftheConvolutionSumDistributivitywithadditionProof:ParallelinterconnectionofLTIsystemsPropertiesoftheConvolutionConvolutionwiththeunitpulseProof:Ifk1=0,thenPropertiesoftheConvolutionShiftpropertyProof:Iff(k)=f1(k)*f2(k),then
信號與系統(tǒng)SignalsandSystems吉林大學(xué)TheAnalysisofDiscrete-TimeSystemsinthez-DomainThez-TransformDefinitionofthez-TransformDefinitionofthez-TransformIntuitionontheRelationbetweenZTandLTLT:Let:Definitionofthez-TransformDefinitionBilateral(two-sided)z-Transform:Unilateral(one-sided)z-Transform:Thetransformpairnotation:信號與系統(tǒng)SignalsandSystems吉林大學(xué)Thez-TransformCommonz-transformpairsCommonz-transformpairsUnitSampleSequenceCommonz-transformpairsOne-sideExponentialSequencewhereaisarealorcomplexnumber.UnitStepSequenceCommonz-transformpairswhere
aisarealorcomplexnumber.信號與系統(tǒng)SignalsandSystems吉林大學(xué)TheRegionofConvergenceforthez-TransformDefinitionTheRegionofConvergenceforthez-TransformThesetofallcomplexnumberszsuchthatthesummationontheright-handside
convergesiscalledtheregionofconvergence(ROC)ofthez-transformF(z).F(z)converges:f(k)z-kisabsolutelysummableFinite-durationsequenceTheRegionofConvergenceforthez-Transformf(k)=0,k
<k1,k>k2,k1<k2k1<0,k2>0:
k1<0,k2
0:k10,k2
>0:0<|z|<
|z|<
|z|>0Example:CausalsequenceTheRegionofConvergenceforthez-Transformf(k)=0,k<0Example:z-planeak
(k),aisarealorcomplexnumber.AnticausalsequenceTheRegionofConvergenceforthez-TransformExample:f(k)=0,k≥0f(k)=-ak
(-k-1),aisarealorcomplexnumber.Two-sidedsequenceTheRegionofConvergenceforthez-Transformk=-∞→+∞
0<R1<R2<:R1<|z|<R2
R1>R2
:
ROCdoesnotconvergeTheRegionofConvergenceforthez-TransformROCisboundedbypolesorextendstoinfinity.F(z)isrational:f(k)ROCrightsidedoutsidetheoutermostpole——outsidethecircleofradiusequaltothelargestmagnitudeofthepolesofF(z)leftsidedinsidetheinnermostnonzeropole——insidethecircleofradiusequaltothesmallestmagnitudeofthepolesofF(z)otherthananyatz=0andextendinginwardtoandpossiblyincludingz=0.信號與系統(tǒng)SignalsandSystems吉林大學(xué)Propertiesofthez-Transform——LinearityIff1(k)
F1(z),
1<
z
<
1,f2(k)
F2(z),
2<
z
<
2,thenLinearityExample:Iff1(k)
F1(z),
1<
z
<
1,f2(k)
F2(z),
2<
z
<
2,thenLinearityExample:信號與系統(tǒng)SignalsandSystems吉林大學(xué)Propertiesofthez-Transform——TimeShiftingTimeShiftingExample:Bilateralz-TransformIff(k)
F(z),
<
z
<
,thenwheremisapositiveinteger.TimeShiftingProof:Unilateralz-Transform——RightshiftIff(k)
F(z),
z
>
,thenwheremisapositiveinteger.TimeShiftingUnilateralz-Transform——RightshiftIff(k)=0,k<0,thenExample:Iff(k)
F(z),
z
>
,thenwheremisapositiveinteger.TimeShiftingUnilateralz-Transform——LeftshiftIff(k)
F(z),
z
>
,thenwheremisapositiveinteger.Proof:TimeShiftingUnilateralz-Transform——LeftshiftIff(k)
F(z),
z
>
,thenwheremisapositiveinteger.Example:
(k+1)信號與系統(tǒng)SignalsandSystems吉林大學(xué)Propertiesofthez-Transform——Scalinginthez-DomainScalinginthez-DomainProof:Iff(k)
F(z),R1<|z|<R2
,thenaisanonzerorealorcomplexnumber.ROCofF(z):ROCof
:Scalinginthez-DomainIff(k)
F(z),R1<|z|<R2
,thenaisanonzerorealorcomplexnumber.Example:
aksin(
k)
(k),0<a<1Scalinginthez-DomainIff(k)
F(z),R1<|z|<R2
,thenaisanonzerorealorcomplexnumber.Example:(-1)k
(k)信號與系統(tǒng)SignalsandSystems吉林大學(xué)Propertiesofthez-Transform——ConvolutionConvolutionProof:Iff1(k)
F1(z),
1<z<
1,f2(k)
F2(z),
2<z<
2,thenConvolutionIff1(k)
F1(z),
1<z<
1,f2(k)
F2(z),
2<z<
2,thenExample:(k+1)
(k)LTIsystems:信號與系統(tǒng)SignalsandSystems吉林大學(xué)Propertiesofthez-Transform——DifferentiationandIntegralinthez-DomainDifferentiationinthez-DomainProof:Iff(k)
F(z),
<
z
<
,then
wherekisanypositiveinteger.Differentiationinthez-DomainIff(k)
F(z),
<
z
<
,then
wherekisanypositiveinteger.Example:Ifa=1,thenDifferentiationinthez-DomainIff(k)
F(z),
<
z
<
,then
wherekisanypositiveinteger.Integralinthez-DomainProof:Iff(k)
F(z),
<
z
<
,then
(misaninteger,andk+m>0)Integralinthez-DomainIff(k)
F(z),
<
z
<
,then
(misaninteger,andk+m>0)Example:Integralinthez-DomainIff(k)
F(z),
<
z
<
,then
(misaninteger,andk+m>0)m=0,k>0:信號與系統(tǒng)SignalsandSystems吉林大學(xué)Propertiesofthez-Transform——Reflectioninthek-domainReflectioninthek-domainProof:Iff(k)
F(z),
<
z
<
,then
Example:信號與系統(tǒng)SignalsandSystems吉林大學(xué)Propertiesofthez-Transform——SummationSummationProof:Iff(k)
F(z),
<
z
<
,then
Example:信號與系統(tǒng)SignalsandSystems吉林大學(xué)Propertiesofthez-Transform——Initial-ValueTheoremandFinal-ValueTheoremInitial-ValueTheoremProof:Iff(k)=0,k<0,andf(k)
F(z),then
Example:0Thez-transformofacausalsequencef(k)isfindf(0).Final-ValueTheoremProof:Iff(k)=0,k<0,f(k)
F(z),a<
z<,0≤a<1,then
Final-ValueTheoremIff(k)=0,k<0,f(k)
F(z),a<
z<,0≤a<1,then
Example:f(k)=0,k<0. aisarealnumber,findf(
).Final-ValueTheorem√√××Final-ValueTheoremIff(k)=0,k<0,f(k)
F(z),a<
z<,0≤a<1,then
Example:f(k)=0,k<0. aisarealnumber,findf(
).Final-ValueTheoremIfF(z)isrationalandthepolesof(z-1)F(z)havemagnitudes<1,then
Example:Thez-transformofacausalsequencef(k)is
Poles:信號與系統(tǒng)SignalsandSystems吉林大學(xué)TheInversez-TransformTheInversez-Transform(IZT)Integral:DefinitionalongacounterclockwiseclosedcircularcontourthatiscontainedintheROCofF(z).AlternativeproceduresPower-seriesexpansionsPartialfractionexpansionsROCandtheInversez-TransformROCf(k)Causalsequence|z|>af1(k)e
(k)Anticausalsequence|z|<bf2(k)e
(-k-1)Two-sidedsequencea<|z|<b
f1(k)e(k)+
f2(k)e
(-k-1)信號與系統(tǒng)SignalsandSystems吉林大學(xué)TheInversez-Transform——PartialfractionexpansionsPartialfractionexpansionsRationalpolynomial:Procedure:PartialfractionexpansionsF(z)f(k)×zIZTPartialfractionexpansions
DistinctPolesSupposethatthepolesz1,z1,…,zNofF(z)aredistinctandareallnonzero.(1)|z|>2;(2)|z|<1;(3)1<|z|<2(1)Example:Partialfractionexpansions
DistinctPolesSupposethatthepolesz1,z1,…,zNofF(z)aredistinctandareallnonzero.(1)|z|>2;(2)|z|<1;(3)1<|z|<2(2)Example:Partialfractionexpansions
DistinctPolesSupposethatthepolesz1,z1,…,zNofF(z)aredistinctandareallnonzero.(1)|z|>2;(2)|z|<1;(3)1<|z|<2(3)Example:Partialfractionexpansions
DistinctPolesz1,2=ae±jbROC:|z|>
Complex
Poles:Partialfractionexpansions
DistinctPolesz1,2=ae±jbComplex
Poles:Example:PartialfractionexpansionsRepeatePolesSupposethatthepolez1isrepeatedrtimes.Matchingcoefficients:Example:PartialfractionexpansionsExample:Step1DividethroughtoobtainwhereF1(z)isstrictlyproper.Step2CarryoutthepartialfractionexpansionofF1(z)and,knowingtheROC,obtaintheinversez-transform.信號與系統(tǒng)SignalsandSystems吉林大學(xué)z-DomainAnalysis—TransformoftheInput/outputDifferenceEquationTransformoftheInput/outputDifferenceEquationLTIsystem:Input:f(k)=0,k<0Initialstate:y(-1),y(-2),…,y(-n)z-Transform:Y(z)=Yzi(z)+Yzs(z)IZT:y(k)=yzi(k)+yzs(k)TransformoftheInput/outputDifferenceEquationExample:y(k)-y(k-1)-2y(k-2)=f(k)+2f(k-2),y(-1)=2,y(-2)=-0.5,f(k)=e(k).Findyzi(k),yzs(k),y(k),k≥0.TransformoftheInput/outputDifferenceEquationExample:y(k)-y(k-1)-2y(k-2)=f(k)+2f(k-2),y(-1)=2,y(-2)=-0.5,f(k)=e(k).Findyzi(k),yzs(k),y(k),k≥0.TransformoftheInput/outputDifferenceEquationExample:y(k)-y(k-1)-2y(k-2)=f(k)+2f(k-2),y(-1)=2,y(-2)=-0.5,f(k)=e(k).Findyzi(k),yzs(k),y(k),k≥0.信號與系統(tǒng)SignalsandSystems吉林大學(xué)z-DomainAnalysis—TheSystemFunctionTheSystemFunction(TransferFunction)DefinitionDeterminationofthesystemfunction(1)
H(z)=Yzs(z)/F(z)(2)H(z)=Z[h(k)]SystemFunctionofInterconnectionsSeriesconnectionH(z)ParallelconnectionH(z)Parallelconnection
H(z)SystemFunctionforInterconnectionsofLTISystemsExample:Determinethezero-stateoftheLTIsystem.Pole-zeroPlotoftheSystemFunctionPole-zeroplotExample:Aplotofthelocationsinthecomplexplaneofthepolesandzeros.Zerosro
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2026吉林長春中國一汽研發(fā)總院全球校園招聘備考題庫(含答案詳解)
- 初一綜合考試題類型及答案
- 2025-2026人教版小學(xué)二年級體育上學(xué)期期末測試卷
- 寧波護(hù)士考編試題及答案
- 2025-2026人教版五年級勞技上期測試卷
- 老年護(hù)理中的技術(shù)支持與安全
- 2025 小學(xué)六年級科學(xué)上冊科學(xué)教育中的數(shù)據(jù)學(xué)習(xí)處理方法課件
- 2025-2026七年級地理上學(xué)期期末湘教卷
- 《飛行汽車電池管理系統(tǒng)技術(shù)規(guī)范》(征求意見稿)
- 腸易激綜合征的營養(yǎng)調(diào)理方案
- 地形測量投標(biāo)標(biāo)書技術(shù)設(shè)計書
- 2025及未來5年馬桶水箱組合項目投資價值分析報告
- 合伙建廠合同協(xié)議書
- 代建合同安全協(xié)議書
- 貸款掛靠合同(標(biāo)準(zhǔn)版)
- 學(xué)生手機理性使用教育教案
- DB64-T 1991-2024 地質(zhì)災(zāi)害監(jiān)測設(shè)施建設(shè)技術(shù)規(guī)范
- 統(tǒng)編版(2024)七年級上冊歷史期末復(fù)習(xí)知識點講義
- 礦山復(fù)工復(fù)產(chǎn)安全培訓(xùn)課件
- 焊工獎罰管理辦法
- 監(jiān)護(hù)人考核管理辦法
評論
0/150
提交評論