安徽省六安市第一中學(xué)2025屆高二上數(shù)學(xué)期末考試試題含解析_第1頁(yè)
安徽省六安市第一中學(xué)2025屆高二上數(shù)學(xué)期末考試試題含解析_第2頁(yè)
安徽省六安市第一中學(xué)2025屆高二上數(shù)學(xué)期末考試試題含解析_第3頁(yè)
安徽省六安市第一中學(xué)2025屆高二上數(shù)學(xué)期末考試試題含解析_第4頁(yè)
安徽省六安市第一中學(xué)2025屆高二上數(shù)學(xué)期末考試試題含解析_第5頁(yè)
已閱讀5頁(yè),還剩10頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

安徽省六安市第一中學(xué)2025屆高二上數(shù)學(xué)期末考試試題注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)填寫在答題卡上。2.回答選擇題時(shí),選出每小題答案后,用鉛筆把答題卡上對(duì)應(yīng)題目的答案標(biāo)號(hào)涂黑,如需改動(dòng),用橡皮擦干凈后,再選涂其它答案標(biāo)號(hào)。回答非選擇題時(shí),將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.?dāng)?shù)列的一個(gè)通項(xiàng)公式為()A. B.C. D.2.下列關(guān)于拋物線的圖象描述正確的是()A.開口向上,焦點(diǎn)為 B.開口向右,焦點(diǎn)為C.開口向上,焦點(diǎn)為 D.開口向右,焦點(diǎn)為3.下列說法正確的個(gè)數(shù)有()(ⅰ)命題“若,則”的否命題為:“若,則”;(ⅱ)“,”的否定為“,使得”;(ⅲ)命題“若,則有實(shí)根”為真命題;(ⅳ)命題“若,則”的否命題為真命題;A.1個(gè) B.2個(gè)C.3個(gè) D.4個(gè)4.空氣質(zhì)量指數(shù)大小分為五級(jí)指數(shù)越大說明污染的情況越嚴(yán)重,對(duì)人體危害越大,指數(shù)范圍在:,,,,分別對(duì)應(yīng)“優(yōu)”、“良”、“輕中度污染”、“中度重污染”、“重污染”五個(gè)等級(jí),如圖是某市連續(xù)14天的空氣質(zhì)量指數(shù)趨勢(shì)圖,下面說法錯(cuò)誤的是().A.這14天中有4天空氣質(zhì)量指數(shù)為“良”B.從2日到5日空氣質(zhì)量越來越差C.這14天中空氣質(zhì)量的中位數(shù)是103D.連續(xù)三天中空氣質(zhì)量指數(shù)方差最小是9日到11日5.圓與直線的位置關(guān)系為()A.相切 B.相離C.相交 D.無法確定6.函數(shù)的導(dǎo)函數(shù)的圖像如圖所示,則()A.為的極大值點(diǎn)B.為的極大值點(diǎn)C.為的極大值點(diǎn)D.為的極小值點(diǎn)7.已知等差數(shù)列{an}中,a4+a9=8,則S12=()A.96 B.48C.36 D.248.橢圓()的右頂點(diǎn)是拋物線的焦點(diǎn),且短軸長(zhǎng)為2,則該橢圓方程為()A. B.C. D.9.已知雙曲線的一個(gè)焦點(diǎn)到它的一條漸近線的距離為,則()A.5 B.25C. D.10.已知拋物線的焦點(diǎn)為,在拋物線上有一點(diǎn),滿足,則的中點(diǎn)到軸的距離為()A. B.C. D.11.已知圓,直線,則直線l被圓C所截得的弦長(zhǎng)的最小值為()A.2 B.3C.4 D.512.在等差數(shù)列中,,表示數(shù)列的前項(xiàng)和,則()A.43 B.44C.45 D.46二、填空題:本題共4小題,每小題5分,共20分。13.圓上的點(diǎn)到直線的距離的最大值為__________.14.若數(shù)列滿足,,則__________15.知函數(shù),若函數(shù)有兩個(gè)不同的零點(diǎn),則實(shí)數(shù)的取值范圍為_____________.16.直線的傾斜角為_______________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓的離心率為,且其左頂點(diǎn)到右焦點(diǎn)的距離為.(1)求橢圓的方程;(2)設(shè)點(diǎn)、在橢圓上,以線段為直徑的圓過原點(diǎn),試問是否存在定點(diǎn),使得到直線的距離為定值?若存在,請(qǐng)求出點(diǎn)坐標(biāo);若不存在,請(qǐng)說理由.18.(12分)設(shè),為雙曲線:(,)的左、右頂點(diǎn),直線過右焦點(diǎn)且與雙曲線的右支交于,兩點(diǎn),當(dāng)直線垂直于軸時(shí),△為等腰直角三角形(1)求雙曲線的離心率;(2)若雙曲線左支上任意一點(diǎn)到右焦點(diǎn)點(diǎn)距離的最小值為3,①求雙曲線方程;②已知直線,分別交直線于,兩點(diǎn),當(dāng)直線傾斜角變化時(shí),以為直徑的圓是否過軸上的定點(diǎn),若過定點(diǎn),求出定點(diǎn)的坐標(biāo);若不過定點(diǎn),請(qǐng)說明理由19.(12分)如圖,矩形的兩個(gè)頂點(diǎn)位于x軸上,另兩個(gè)頂點(diǎn)位于拋物線在x軸上方的曲線上,求矩形面積最大時(shí)的邊長(zhǎng).20.(12分)已知圓與(1)過點(diǎn)作直線與圓相切,求的方程;(2)若圓與圓相交于、兩點(diǎn),求的長(zhǎng)21.(12分)在直角坐標(biāo)系中,曲線C的參數(shù)方程為,(為參數(shù)),以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系.(1)寫出曲線C的極坐標(biāo)方程;(2)已知直線與曲線C相交于A,B兩點(diǎn),求.22.(10分)如圖,在三棱柱中,=2,且,⊥底面ABC.E為AB中點(diǎn)(1)求證:平面;(2)求平面與平面CEB夾角的余弦值

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】根據(jù)規(guī)律,總結(jié)通項(xiàng)公式,即可得答案.【詳解】根據(jù)規(guī)律可知數(shù)列的前三項(xiàng)為,所以該數(shù)列一個(gè)通項(xiàng)公式為故選:A2、A【解析】把化成拋物線標(biāo)準(zhǔn)方程,依據(jù)拋物線幾何性質(zhì)看開口方向,求其焦點(diǎn)坐標(biāo)即可解決.【詳解】,即.則,即故此拋物線開口向上,焦點(diǎn)為故選:A3、B【解析】根據(jù)四種命題的結(jié)構(gòu)特征可判斷(?。áぃ┑恼`,根據(jù)全稱命題的否定形式可判斷(ⅱ)的正誤,根據(jù)判別式的正誤可判斷(ⅲ)的正誤.【詳解】命題“若,則”的否命題”為“若,則”,故(?。╁e(cuò)誤.“,”的否定為“,使得”,故(ⅱ)正確,當(dāng)時(shí),,故有實(shí)根,故(ⅲ)正確,“若,則”的否命題為“若,則”,取,則,故命題若,則為假命題,故(ⅳ)錯(cuò)誤.故選:B4、C【解析】根據(jù)題圖分析數(shù)據(jù),對(duì)選項(xiàng)逐一判斷【詳解】對(duì)于A,14天中有1,3,12,13共4日空氣質(zhì)量指數(shù)為“良”,故A正確對(duì)于B,從2日到5日空氣質(zhì)量指數(shù)越來越高,故空氣質(zhì)量越來越差,故B正確對(duì)于C,14個(gè)數(shù)據(jù)中位數(shù)為:,故C錯(cuò)誤對(duì)于D,觀察折線圖可知D正確故選:C5、C【解析】先計(jì)算出直線恒過定點(diǎn),而點(diǎn)在圓內(nèi),所以圓與直線相交.【詳解】直線可化為,所以恒過定點(diǎn).把代入,有:,所以在圓內(nèi),所以圓與直線的位置關(guān)系為相交.故選:C6、A【解析】由導(dǎo)函數(shù)的圖像可得函數(shù)的單調(diào)區(qū)間,從而可求得函數(shù)的極值【詳解】由的圖像可知,在和上單調(diào)遞減,在和上單調(diào)遞增,所以為的極大值點(diǎn),和為的極小值點(diǎn),不是函數(shù)的極值點(diǎn),故選:A7、B【解析】利用等差數(shù)列的性質(zhì)求解即可.【詳解】解:由等差數(shù)列的性質(zhì)得.故選:B8、A【解析】求得拋物線的焦點(diǎn)從而求得,再結(jié)合題意求得,即可寫出橢圓方程.【詳解】因?yàn)閽佄锞€的焦點(diǎn)坐標(biāo)為,故可得;又短軸長(zhǎng)為2,故可得,即;故橢圓方程為:.故選:.9、B【解析】由漸近線方程得到,焦點(diǎn)坐標(biāo)為,漸近線方程為:,利用點(diǎn)到直線距離公式即得解【詳解】由題意,雙曲線故焦點(diǎn)坐標(biāo)為,漸近線方程為:焦點(diǎn)到它的一條漸近線的距離為:解得:故選:B10、A【解析】設(shè)點(diǎn),利用拋物線的定義求出的值,可求得點(diǎn)的橫坐標(biāo),即可得解.【詳解】設(shè)點(diǎn),易知拋物線的焦點(diǎn)為,由拋物線的定義可得,得,所以,點(diǎn)的橫坐標(biāo)為,故點(diǎn)到軸的距離為.故選:A.11、C【解析】直線l過定點(diǎn)D(1,1),當(dāng)時(shí),弦長(zhǎng)最短.【詳解】由,圓心,半徑,,由,故直線l過定點(diǎn),∵,故D在圓C內(nèi)部,直線l始終與圓相交,當(dāng)時(shí),直線l被圓截得的弦長(zhǎng)最短,,弦長(zhǎng)=.故選:C.12、C【解析】根據(jù)等差數(shù)列的性質(zhì),求得,結(jié)合等差數(shù)列的求和公式,即可求解.【詳解】由等差數(shù)列中,滿足,根據(jù)等差數(shù)列的性質(zhì),可得,所以,則.故選:C.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】先求得圓心到直線的距離,結(jié)合圓上的點(diǎn)到直線的距離的最大值為,即可求解.【詳解】由題意,圓的圓心坐標(biāo)為,半徑為,則圓心到直線的距離為,所以圓上的點(diǎn)到直線的距離的最大值為.故答案為:14、7【解析】根據(jù)遞推公式,依次求得值.【詳解】依題意,由,可知,故答案為:715、【解析】根據(jù)分段函數(shù)的性質(zhì),結(jié)合冪函數(shù)、一次函數(shù)的單調(diào)性判斷零點(diǎn)的分布,進(jìn)而求m的范圍.【詳解】由解析式知:在上為增函數(shù)且,在上,時(shí)為單調(diào)函數(shù),時(shí)無零點(diǎn),故要使有兩個(gè)不同的零點(diǎn),即兩側(cè)各有一個(gè)零點(diǎn),所以在上必遞減且,則,可得.故答案為:16、【解析】由直線的斜率為,得到,即可求解.【詳解】由題意,可知直線的斜率為,設(shè)直線的傾斜角為,則,解得,即換線的傾斜角為.【點(diǎn)睛】本題主要考查直線的傾斜角的求解問題,其中解答中熟記直線的傾斜角與斜率的關(guān)系,合理準(zhǔn)確計(jì)算是解答的關(guān)鍵,著重考查了運(yùn)算與求解能力,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)存在,.【解析】(1)由題設(shè)可知求出,再結(jié)合,從而可求出橢圓的方程,(2)①若直線與軸垂直,由對(duì)稱性可知,代入橢圓方程可求得結(jié)果,②若直線不與軸垂直,設(shè)直線的方程為,將直線方程與橢圓方程聯(lián)立方程組,消去,然后利用根與系數(shù)的關(guān)系,設(shè),,再由條件,得,從而得,再利用點(diǎn)到直線的距離公式可求得結(jié)果【詳解】(1)由題設(shè)可知解得,,,所以橢圓的方程為:;(2)設(shè),,①若直線與軸垂直,由對(duì)稱性可知,將點(diǎn)代入橢圓方程,解得,原點(diǎn)到該直線的距離;②若直線不與軸垂直,設(shè)直線的方程為,由消去得,則由條件,即,由韋達(dá)定理得,整理得,則原點(diǎn)到該直線的距離;故存在定點(diǎn),使得到直線的距離為定值.18、(1);(2)①;②定點(diǎn)有兩個(gè),【解析】(1)由雙曲線方程有、、,根據(jù)已知條件有,即可求離心率.(2)①由題設(shè)有,結(jié)合(1)求雙曲線參數(shù),寫出雙曲線方程即可;②由題設(shè)可設(shè)為,,,聯(lián)立雙曲線方程結(jié)合韋達(dá)定理求,,,,再由、的方程求,坐標(biāo),若在為直徑的圓上點(diǎn),由結(jié)合向量垂直的坐標(biāo)表示列方程,進(jìn)而求出定點(diǎn)坐標(biāo).【小問1詳解】由題設(shè),若,且,又△為等腰直角三角形,∴,即,則又,可得.【小問2詳解】由題設(shè),,由(1)有,則,即,①由上可知:雙曲線方程為.②由①知:,且直線的斜率不為0,設(shè)為,,,聯(lián)立直線與雙曲線得:,∴,,則,∴,∴直線為;直線為;∴,,若在為直徑的圓上點(diǎn),∴,且,∴,令,則,∴,即,∴或,即過定點(diǎn).【點(diǎn)睛】關(guān)鍵點(diǎn)點(diǎn)睛:第二問的②,設(shè)直線為,聯(lián)立直線與雙曲線,應(yīng)用韋達(dá)定理求,,,,進(jìn)而根據(jù)、的方程求,坐標(biāo),再由圓的性質(zhì)及向量垂直的坐標(biāo)表示求定點(diǎn)坐標(biāo).19、當(dāng)矩形面積最大時(shí),矩形邊AB長(zhǎng),BC長(zhǎng)【解析】先設(shè)出點(diǎn)坐標(biāo),進(jìn)而表示出矩形的面積,通過求導(dǎo)可求出其最大面積.【詳解】設(shè)點(diǎn),那么矩形面積,.令解得(負(fù)舍).所以S在(0,)上單調(diào)遞增,在(,2)上單調(diào)遞;..所以當(dāng)時(shí),S有最大值.此時(shí)答:當(dāng)矩形面積最大時(shí),矩形邊AB長(zhǎng),BC長(zhǎng).20、(1)或(2)【解析】(1)根據(jù)已知可得圓心與半徑,再利用幾何法可得切線方程;(2)聯(lián)立兩圓方程可得公共弦方程,進(jìn)而可得弦長(zhǎng).【小問1詳解】解:圓的方程可化為:,即:圓的圓心為,半徑為若直線的斜率不存在,方程為:,與圓相切,滿足條件若直線的斜率存在,設(shè)斜率為,方程為:,即:由與圓相切可得:,解得:所以的方程為:,即:綜上可得的方程為:或【小問2詳解】聯(lián)立兩圓方程得:,消去二次項(xiàng)得所在直線的方程:,圓的圓心到的距離,所以.21、(1);(2).【解析】(1)首先將圓的參數(shù)方程華為普通方程,再轉(zhuǎn)化為極坐標(biāo)方程即可.(2)首先聯(lián)立得到,再求的長(zhǎng)度即可.【詳解】(1)將曲線C的參數(shù)方程,(為參數(shù))化為普通方程,得,極坐標(biāo)方程為.(2)聯(lián)立方程組,消去得,設(shè)點(diǎn)A,B對(duì)應(yīng)的極徑分別為,,則,,所以.22、(1)證明見解析;(2).【解析

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論