版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
陜西省五校2025屆數(shù)學高二上期末統(tǒng)考試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.在平面直角坐標系中,已知點,,,,直線AP,BP相交于點P,且它們斜率之積是.當時,的最小值為()A. B.C. D.2.若動點在方程所表示的曲線上,則以下結論正確的是()①曲線關于原點成中心對稱圖形;②動點到坐標原點的距離的取值范圍為;③動點與點的最小距離為;④動點與點的連線斜率的取值范圍是.A.①② B.①②③C.③④ D.①②④3.南宋數(shù)學家楊輝所著的《詳解九章算法》中有如下俯視圖所示的幾何體,后人稱之為“三角垛”.其最上層有1個球,第二層有3個球,第三層有6個球,…,則第十層球的個數(shù)為()A.45 B.55C.90 D.1104.直線的傾斜角為()A.-30° B.60°C.150° D.120°5.我國古代數(shù)學名著《算法統(tǒng)宗》記有行程減等問題:三百七十八里關,初行健步不為難次日腳痛減一半,六朝才得到其關.要見每朝行里數(shù),請公仔細算相還.意為:某人步行到378里的要塞去,第一天走路強壯有力,但把腳走痛了,次日因腳痛減少了一半,他所走的路程比第一天減少了一半,以后幾天走的路程都比前一天減少一半,走了六天才到達目的地.請仔細計算他每天各走多少路程?在這個問題中,第四天所走的路程為()A.96 B.48C.24 D.126.當我們停放自行車時,只要將自行車旁的撐腳放下,自行車就穩(wěn)了,這用到了()A.三點確定一平面 B.不共線三點確定一平面C.兩條相交直線確定一平面 D.兩條平行直線確定一平面7.下列直線中,傾斜角最大的為()A. B.C. D.8.已知命題,則為()A. B.C. D.9.阿基米德(Archimedes,公元前287年-公元前212年),出生于古希臘西西里島敘拉古(今意大利西西里島上),偉大的古希臘數(shù)學家、物理學家,與高斯、牛頓并稱為世界三大數(shù)學家.有一類三角形叫做阿基米德三角形(過拋物線的弦與過弦端點的兩切線所圍成的三角形),他利用“通近法”得到拋物線的弦與拋物線所圍成的封閉圖形的面積等于阿基米德三角形面積的(即右圖中陰影部分面積等于面積的).若拋物線方程為,且直線與拋物線圍成封閉圖形的面積為6,則()A.1 B.2C. D.310.若的解集是,則等于()A.-14 B.-6C.6 D.1411.曲線在點處的切線過點,則實數(shù)()A. B.0C.1 D.212.在空間直角坐標系中,點關于軸的對稱點為點,則點到直線的距離為()A B.C. D.6二、填空題:本題共4小題,每小題5分,共20分。13.已知存在正數(shù)使不等式成立,則的取值范圍_____14.已知數(shù)列的前n項和為,且滿足通項公式,則________15.三棱錐中,、、兩兩垂直,且.給出下列四個命題:①;②;③和的夾角為;④三棱錐的體積為.其中所有正確命題的序號為______________.16.若,,,,與,,,,,,均為等差數(shù)列,則______三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知圓,圓.(1)試判斷圓C與圓M的位置關系,并說明理由;(2)若過點的直線l與圓C相切,求直線l的方程.18.(12分)已知函數(shù)(1)求曲線在點(e,)的切線方程;(2)求函數(shù)的單調區(qū)間.19.(12分)已知函數(shù)的圖像在(為自然對數(shù)的底數(shù))處取得極值.(1)求實數(shù)的值;(2)若不等式在恒成立,求的取值范圍.20.(12分)已知等差數(shù)列各項均不為零,為其前項和,點在函數(shù)的圖像上.(1)求的通項公式;(2)若數(shù)列滿足,求的前項和;(3)若數(shù)列滿足,求的前項和的最大值、最小值.21.(12分)如圖,AC是圓O的直徑,B是圓O上異于A,C的一點,平面ABC,點E在棱PB上,且,,.(1)求證:;(2)當三棱錐的體積最大時,求二面角的余弦值.22.(10分)如圖,在長方體中,,若點P為棱上一點,且,Q,R分別為棱上的點,且.(1)求直線與平面所成角的正弦值;(2)求平面與平面的夾角的余弦值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】設出點坐標,求得、所在直線的斜率,由斜率之積是列式整理即可得到點的軌跡方程,設,根據(jù)雙曲線的定義,從而求出的最小值;【詳解】解:設點坐標為,則直線的斜率;直線的斜率由已知有,化簡得點的軌跡方程為又,所以點的軌跡方程為,即點的軌跡為以、為頂點的雙曲線的左支(除點),因為,設,由雙曲線的定義可知,所以,當且僅當、、三點共線時取得最小值,因為,所以,所以,即的最小值為;故選:A2、A【解析】將原方程等價變形為,將方程中的換為,換為,方程不變,可判斷①;利用兩點間的距離公式,結合二次函數(shù)知識可判斷②和③;取特殊點可判斷④.【詳解】因為等價于,即,對于①,將方程中的換為,換為,方程不變,所以曲線關于原點成中心對稱圖形,故①正確;對于②,設,則動點到坐標原點的距離,因為,所以,故②正確;對于③,設,動點與點的距離為,因為函數(shù)在上遞減,所以當時,函數(shù)取得最小值,從而取得最小值,故③不正確;對于④,當時,因為,所以,故④不正確.綜上所述:結論正確的是:①②.故選:A3、B【解析】根據(jù)題意,發(fā)現(xiàn)規(guī)律并將規(guī)律表達出來,第層有個球.【詳解】根據(jù)規(guī)律,可以得知:第一層有個球;第二層有個球;第三層有個球,則根據(jù)規(guī)律可知:第層有個球設第層的小球個數(shù)為,則有:故第十層球的個數(shù)為:故選:4、C【解析】根據(jù)直線斜率即可得傾斜角.【詳解】設直線的傾斜角為由已知得,所以直線的斜率,由于,故選:C.5、C【解析】每天所走的里程構成公比為的等比數(shù)列,設第一天走了里,利用等比數(shù)列基本量代換,直接求解.【詳解】由題意可知:每天所走的里程構成公比為的等比數(shù)列.第一天走了里,第4天走了.故選:C6、B【解析】自行車前后輪與撐腳分別接觸地面,使得自行車穩(wěn)定,此時自行車與地面的三個接觸點不在同一條線上.【詳解】自行車前后輪與撐腳分別接觸地面,此時三個接觸點不在同一條線上,所以可以確定一個平面,即地面,從而使得自行車穩(wěn)定.故選B項.【點睛】本題考查不共線的三個點確定一個平面,屬于簡單題.7、D【解析】首先分別求直線的斜率,再結合直線傾斜角與斜率的關系,即可判斷選項.【詳解】A.直線的斜率;B.直線的斜率;C.直線的斜率;D.直線的斜率,因為,結合直線的斜率與傾斜角的關系,可知直線的傾斜角最大.故選:D8、C【解析】將全稱命題否定為特稱命題即可【詳解】由題意,根據(jù)全稱命題與特稱命題的關系,可得命題,則,故選:C.9、D【解析】根據(jù)題目所給條件可得阿基米德三角形的面積,再利用三角形面積公式即可求解.【詳解】由題意可知,當過焦點的弦垂直于x軸時,即時,,即,故選:D10、A【解析】由一元二次不等式的解集,結合根與系數(shù)關系求參數(shù)a、b,即可得.【詳解】∵的解集為,∴-5和2為方程的兩根,∴有,解得,∴.故選:A.11、A【解析】由導數(shù)的幾何意義得切線方程為,進而得.【詳解】解:因為,,,所以,切線方程為,因為切線過點,所以,解得故選:A12、C【解析】按照空間中點到直線的距離公式直接求解.【詳解】由題意,,,的方向向量,,則點到直線的距離為.故選:C.二、填空題:本題共4小題,每小題5分,共20分。13、(1,1)【解析】存在性問題轉化為最大值,運用均值不等式,求出的最大值,轉化成解對數(shù)不等式,進而解出【詳解】解:∵,由于,則,∴,當且僅當時,即:時,∴有最大值,又存在正數(shù)使不等式成立,則,即,∴,即的取值范圍為:.故答案為:【點睛】本題考查均值不等式的應用和對數(shù)不等式的解法,還涉及存在性問題,考查化簡計算能力14、【解析】由時,,可得,利用累乘法得,從而即可求解.【詳解】因為,所以時,,即,化簡得,又,所以,檢驗時也成立,所以,所以,故答案:.15、①②③【解析】設,以點為坐標原點,、、所在直線分別為、、軸建立空間直角坐標系,利用空間向量數(shù)量積的坐標運算可判斷①②③④的正誤.【詳解】設,由于、、兩兩垂直,以點為坐標原點,、、所在直線分別為、、軸建立空間直角坐標系,如下圖所示:則、、、.對于①,,所以,,①正確;對于②,,,則,②正確;對于③,,,,,所以,和的夾角為,③正確;對于④,,,,則,所以,,而三棱錐的體積為,④錯誤.故答案為:①②③.【點睛】關鍵點點睛:在立體幾何中計算空間向量的相關問題,可以選擇合適的點與直線建立空間直角坐標系,利用空間向量的坐標運算即可.16、##【解析】由題意利用等差數(shù)列的定義和通項公式,求得要求式子的值【詳解】設等差數(shù)列,,,,的公差為,等差數(shù)列,,,,,,的公差為,則有,且,所以,則,故答案為:三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)圓C與圓M相交,理由見解析(2)或【解析】(1)利用圓心距與半徑的關系即可判斷結果;(2)討論,當直線l的斜率不存在時則方程為,當直線l的斜率存在時,設其方程為,利用圓心到直線的距離等于半徑計算即可得出結果.【小問1詳解】把圓M的方程化成標準方程,得,圓心為,半徑.圓C的圓心為,半徑,因為,所以圓C與圓M相交,【小問2詳解】①當直線l的斜率不存在時,直線l的方程為到圓心C距離為2,滿足題意;②當直線l的斜率存在時,設其方程為,由題意得,解得,故直線l的方程為.綜上,直線l的方程為或.18、(1);(2)在單調遞減,在單調遞增【解析】(1)求出函數(shù)的導數(shù),求出切線的斜率,切點坐標,然后求解切線方程;(2)利用導函數(shù)的符號,判斷函數(shù)的單調性,求解函數(shù)的單調區(qū)間即可【詳解】解:(1)由得,所以切線斜率為切點坐標為,所以切線方程為,即;(2),令,得當時,;當時,,∴在單調遞減,在單調遞增19、(1)(2)【解析】(1)由求得的值.(2)由分離常數(shù),通過構造函數(shù)法,結合導數(shù)求得的取值范圍.【小問1詳解】因為,所以,因為函數(shù)的圖像在點處取得極值,所以,,經檢驗,符合題意,所以;【小問2詳解】由(1)知,,所以在恒成立,即對任意恒成立.令,則.設,易得是增函數(shù),所以,所以,所以函數(shù)在上為增函數(shù),則,所以.20、(1)(2)(3)最大值為,最小值為【解析】(1)將點代入函數(shù)解析再結合前和即可求解;(2)運用錯位相減法或分組求和法都可以求解;(3)將數(shù)列的通項變形為,再求和,通過分類討論從單調性上分析求解即可.【小問1詳解】因為點在函數(shù)的圖像上,所以,又數(shù)列是等差數(shù)列,所以,即所以,;【小問2詳解】解法1:,==,解法2:,①,②①-②得,;【小問3詳解】記的前n項和為,則=,當n為奇數(shù)時隨著n的增大而減小,可得,當n為偶數(shù)時隨著n增大而增大,可得,所以的最大值為,最小值為.21、(1)證明見解析(2)【解析】(1)由圓的性質可得,再由線面垂直的性質可得,從而由線面垂直的判定定理可得平面PAB,所以得,再結合已知條件可得平面PBC,由線面垂直的性質可得結論;(2)由已知條件結合基本不等式可得當三棱錐的體積最大時,是等腰直角三角形,,從而以OB,OC所在直線分別為x軸,y軸,以過點O且垂直于圓O平面的直線為z軸建立如圖所示的空間直角坐標系,利用空間向量求解.【小問1詳解】證明:因為AC是圓O的直徑,點B是圓O上不與A,C重合的一個動點,所以.因為平面ABC,平面ABC,所以.因為,且AB,平面PAB,所以平面PAB.因為平面PAB,所以.因為,,且BC,平面PBC,所以平面PBC.因為平面PBC,所以.【小問2詳解】解:因為,,所以,所以三棱錐的體積,(當且僅當“”時等號成立).所以當三棱錐的體積最大時,是等腰直角三角形,.所以以OB,OC所在直線分別為x軸,y軸,以過點O且垂直于圓O平面的直線為z軸建立如圖所示的空間直角坐標系,則,,,.因為∽,所以,因為,,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2026年大學環(huán)境生態(tài)學期末試題附答案(b卷)
- 2025海南省科技創(chuàng)新發(fā)展服務中心招聘事業(yè)編制人員(第5號)考試題庫附答案
- 2026年法律知識考試題庫200道及參考答案(達標題)
- 新購房戶籍遷移申請書
- 病假申請書字體規(guī)定大小
- 鳳臺縣農村建房申請書
- 走廊外墻維修方案范本
- 規(guī)劃方案車位變更申請書
- 2026年端午節(jié)的民俗教育
- 2026年抗震設計中的施工工藝考量
- 樣板加油站打造方案
- 浙江省杭州市西湖區(qū)2023-2024學年六年級上學期期末科學試卷
- 水站運維服務投標方案(技術標)
- 西安大地種苗有限公司種子加工儲備中心建設項目(固廢環(huán)保設施)竣工環(huán)境保護驗收監(jiān)測報告
- 不銹鋼管道安裝施工工藝
- GB/T 6003.1-2022試驗篩技術要求和檢驗第1部分:金屬絲編織網(wǎng)試驗篩
- GB/T 96.1-2002大墊圈A級
- 印章證照外借申請登記表
- 2022年天津市津南創(chuàng)騰經濟開發(fā)有限公司招聘筆試試題及答案解析
- 金屬非金屬露天礦山安全生產責任制(含安全手冊)
- 國家開放大學電大《外國文學專題(本)》期末題庫及答案
評論
0/150
提交評論