2025屆云南省昆明市祿勸縣第一中學高二上數(shù)學期末學業(yè)水平測試模擬試題含解析_第1頁
2025屆云南省昆明市祿勸縣第一中學高二上數(shù)學期末學業(yè)水平測試模擬試題含解析_第2頁
2025屆云南省昆明市祿勸縣第一中學高二上數(shù)學期末學業(yè)水平測試模擬試題含解析_第3頁
2025屆云南省昆明市祿勸縣第一中學高二上數(shù)學期末學業(yè)水平測試模擬試題含解析_第4頁
2025屆云南省昆明市祿勸縣第一中學高二上數(shù)學期末學業(yè)水平測試模擬試題含解析_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費閱讀

付費下載

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2025屆云南省昆明市祿勸縣第一中學高二上數(shù)學期末學業(yè)水平測試模擬試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知x,y滿足約束條件,則的最大值為()A.3 B.C.1 D.2.過點且垂直于直線的直線方程為()A. B.C. D.3.直線的斜率是方程的兩根,則與的位置關系是()A.平行 B.重合C.相交但不垂直 D.垂直4.已知橢圓C:()的長軸的長為4,焦距為2,則C的方程為()A B.C. D.5.數(shù)學家歐拉在1765年提出定理:三角形的外心、重心、垂心依次位于同一直線上,且重心到外心的距離是重心到垂心距離的一半.這條直線被后人稱為三角形的歐拉線,已知△的頂點,,且,則△的歐拉線的方程為()A. B.C. D.6.已知,則下列不等式一定成立的是()A. B.C. D.7.已知A為拋物線C:y2=2px(p>0)上一點,點A到C的焦點的距離為12,到y(tǒng)軸的距離為9,則p=()A.2 B.3C.6 D.98.已知等差數(shù)列的前n項和為,且,,則為()A. B.C. D.9.已知是等差數(shù)列,,,則公差為()A.6 B.C. D.210.曲線在處的切線的傾斜角是()A. B.C. D.11.命題“,”的否定是A., B.,C., D.,12.已知拋物線的焦點為F,且點F與圓上點的距離的最大值為6,則拋物線的準線方程為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知點,平面過,,三點,則點到平面的距離為________.14.有一組數(shù)據,其平均數(shù)為3,方差為2,則新的數(shù)據的方差為________.15.若,滿足約束條件,則的最小值為______.16.給定點、、與點,求點到平面的距離______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖,四棱錐中,是邊長為4的正三角形,為正方形,平面平面,、分別為、中點.(1)證明:平面;(2)求直線EP與平面AEF所成角的正弦值.18.(12分)已知橢圓過點,且離心率.(1)求橢圓的方程;(2)設直交橢圓于兩點,判斷點與以線段為直徑的圓的位置關系,并說明理由.19.(12分)已知的展開式中只有第五項的二項式系數(shù)最大.(1)求該展開式中有理項的項數(shù);(2)求該展開式中系數(shù)最大的項.20.(12分)已知A,B兩地相距200km,某船從A地逆水到B地,水速為8km/h,船在靜水中的速度為vkm/h(v>8).若船每小時的燃料費與其在靜水中速度的平方成正比,比例系數(shù)為k,當v=12km/h,每小時的燃料費為720元(1)求比例系數(shù)k(2)當時,為了使全程燃料費最省,船的實際前進速度應為多少?(3)當(x為大于8的常數(shù))時,為了使全程燃料費最省,船的實際前進速度應為多少?21.(12分)已知等比數(shù)列的公比為,前項和為,,,(1)求(2)在平面直角坐標系中,設點,直線的斜率為,且,求數(shù)列的通項公式22.(10分)已知幾何體中,平面平面,是邊長為4的菱形,,是直角梯形,,,且(1)求證:;(2)求平面與平面所成角的余弦值

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】由題意首先畫出可行域,然后結合目標函數(shù)的幾何意義求解最大值即可.【詳解】繪制不等式組表示的平面區(qū)域如圖所示,結合目標函數(shù)的幾何意義可知目標函數(shù)在點A處取得最大值,聯(lián)立直線方程:,可得點A的坐標為:,據此可知目標函數(shù)的最大值為:.故選:A【點睛】方法點睛:求線性目標函數(shù)的最值,當時,直線過可行域且在y軸上截距最大時,z值最大,在y軸截距最小時,z值最小;當時,直線過可行域且在y軸上截距最大時,z值最小,在y軸上截距最小時,z值最大.2、A【詳解】因為所求直線垂直于直線,又直線的斜率為,所以所求直線的斜率,所以直線方程為,即.故選:A【點睛】本題主要考查直線方程的求法,屬基礎題.3、C【解析】由韋達定理可得方程的兩根之積為,從而可知直線、的斜率之積為,進而可判斷兩直線的位置關系【詳解】設方程的兩根為、,則直線、的斜率,故與相交但不垂直故選:C4、D【解析】由題設可得求出橢圓參數(shù),即可得方程.【詳解】由題設,知:,可得,則,∴C的方程為.故選:D.5、D【解析】由題設條件求出垂直平分線的方程,且△的外心、重心、垂心都在垂直平分線上,結合歐拉線的定義,即垂直平分線即為歐拉線.【詳解】由題設,可得,且中點為,∴垂直平分線的斜率,故垂直平分線方程為,∵,則△的外心、重心、垂心都在垂直平分線上,∴△的歐拉線的方程為.故選:D6、B【解析】運用不等式的性質及舉反例的方法可求解.詳解】對于A,如,滿足條件,但不成立,故A不正確;對于B,因為,所以,所以,故B正確;對于C,因為,所以,所以不成立,故C不正確;對于D,因為,所以,所以,故D不正確.故選:B7、C【解析】利用拋物線的定義建立方程即可得到答案.【詳解】設拋物線的焦點為F,由拋物線的定義知,即,解得.故選:C.【點晴】本題主要考查利用拋物線的定義計算焦半徑,考查學生轉化與化歸思想,是一道容易題.8、C【解析】直接由等差數(shù)列求和公式結合,求出,再由求和公式求出即可.【詳解】由題意知:,解得,則.故選:C.9、C【解析】設的首項為,把已知的兩式相減即得解.【詳解】解:設的首項為,根據題意得,兩式相減得.故選:C10、D【解析】求出函數(shù)的導數(shù),再求出并借助導數(shù)的幾何意義求解作答.【詳解】由求導得:,則有,因此,曲線在處的切線的斜率為,所以曲線在處切線的傾斜角是.故選:D11、C【解析】特稱命題的否定是全稱命題,改量詞,且否定結論,故命題的否定是“”.本題選擇C選項.12、D【解析】先求得拋物線的焦點坐標,再根據點F與圓上點的距離的最大值為6求解.【詳解】因為拋物線的焦點為F,且點F與圓上點的距離的最大值為6,所以,解得,所以拋物線準線方程為,故選:D二、填空題:本題共4小題,每小題5分,共20分。13、【解析】先求得平面ABC的一個法向量,然后由求解.【詳解】因為,,,,所以,設平面ABC的一個法向量為,則,即,令,則,所以則點到平面的距離為,故答案:14、2【解析】由已知得,,然后計算的平均數(shù)和方差可得答案.【詳解】由已知得,,所以,.故答案為:2.15、0【解析】作出約束條件對應的可行域,當目標函數(shù)過點時,取得最小值,求解即可.【詳解】作出約束條件對應的可行域,如下圖陰影部分,聯(lián)立,可得交點為,目標函數(shù)可化為,當目標函數(shù)過點時,取得最小值,即.故答案為:0.【點睛】本題考查線性規(guī)劃,考查數(shù)形結合的數(shù)學思想的應用,考查學生的計算求解能力,屬于基礎題.16、【解析】先求出平面的法向量,再利用點到面的距離公式計算即可.【詳解】設平面的法向量為,點到平面的距離為,,,即,令,得故答案為:.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)見解析(2)【解析】(1)連接,證明,即可證明平面;(2)取的中點,連接,由平面平面,得平面,建立如圖所示空間直角坐標系,利用向量法即可求得答案.【小問1詳解】證明:連接,是正方形,是的中點,是的中點,是的中點,,平面,平面,平面;【小問2詳解】取的中點,連接,則,因為是邊長為4的正三角形,所以,因為平面平面,且平面平面,所以平面,建立如圖所示空間直角坐標系,則,則,設平面的法向量,則有,可取,則,所以直線EP與平面AEF所成角的正弦值為.18、(1)(2)點G在以AB為直徑的圓外【解析】解法一:(Ⅰ)由已知得解得所以橢圓E的方程為(Ⅱ)設點AB中點為由所以從而.所以.,故所以,故G在以AB為直徑的圓外解法二:(Ⅰ)同解法一.(Ⅱ)設點,則由所以從而所以不共線,所以銳角.故點G在以AB為直徑的圓外考點:1、橢圓的標準方程;2、直線和橢圓的位置關系;3、點和圓的位置關系19、(1);(2)和【解析】(1)先求出,再寫出二項式展開式的通項,令即可求解;(2)設第項系數(shù)最大,則,即可解得的值,進而可得展開式中系數(shù)最大的項.【詳解】(1)由題意可得:,得,的展開式通項為,,要求展開式中有理項,只需令,所以所以有理項有5項,(2)設第項系數(shù)最大,則,即,即,解得:,因為,所以或所以,所以展開式中系數(shù)最大的項為和.【點睛】解二項式的題關鍵是求二項式展開式的通項,求有理項需要讓的指數(shù)位置是整數(shù),求展開式中系數(shù)最大的項需要滿足第項的系數(shù)大于等于第項的系數(shù),第項的系數(shù)大于等于第項的系數(shù),屬于中檔題20、(1)5(2)8km/h(3)答案見解析【解析】(1)列出關系式,根據當v=12km/h,每小時的燃料費為720元即可求解;(2)列出燃料費的函數(shù)解析式,利用導數(shù)求其最值即可;(3)討論x的范圍,結合(2)的結論可得答案.【小問1詳解】設每小時的燃料費為,則當v=12km/h,每小時的燃料費為720元,代入得.【小問2詳解】由(1)得.設全程燃料費為y,則(),所以,令,解得v=0(舍去)或v=16,所以當時,;當時,,所以當v=16時,y取得最小值,故為了使全程燃料費最省,船的實際前進速度應為8km/h【小問3詳解】由(2)得,若時,則y在區(qū)間上單調遞減,當v=x時,y取得最小值;若時,則y區(qū)間(8,16)上單調遞減,在區(qū)間上單調遞增,當v=16時,y取得最小值;綜上,當時,船的實際前進速度為8km/h,全程燃料費最?。划敃r,船的實際前進速度應為(x-8)km/h,全程燃料費最省21、(1),;(2),【解析】(1)設出等比數(shù)列的首項和公比,根據已知條件列出關于的方程組,由此求解出的值,則通項公式可求;(2)根據題意表示出斜率關系,然后采用累加法求解出的通項公式.【詳解】(1)因為等比數(shù)列的公比為,,,由已知,,得,解得或(舍),所以,,由得,所以所以,(2)由直線的斜率為,得,即,由,,,,,可得,所以,當時也滿足,所以,22、(1)證明見解析;(2).【解析】(1)根據菱形的性質,結合面面垂直的性質定理、線面垂直的判定定理和性質進行

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論