版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
北京市海淀區(qū)重點初中2025屆數(shù)學高二上期末聯(lián)考模擬試題注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.下列求導運算正確的是()A. B.C. D.2.等差數(shù)列中,若,,則等于()A. B.C. D.3.在一次體檢中,發(fā)現(xiàn)甲、乙兩個單位的職工中體重超過的人員的體重如下(單位:).若規(guī)定超過為顯著超重,從甲、乙兩個單位中體重超過的職工中各抽取1人,則這2人中,恰好有1人顯著超重的概率為()A. B.C. D.4.若兩直線與互相垂直,則k的值為()A.1 B.-1C.-1或1 D.25.已知等差數(shù)列前項和為,若,則的公差為()A.4 B.3C.2 D.16.已知雙曲線C:的漸近線方程是,則m=()A.3 B.6C.9 D.7.我國的刺繡有著悠久的歷史,如圖,(1)(2)(3)(4)為刺繡最簡單的四個圖案,這些圖案都是由小正方形構成,小正方形個數(shù)越多刺繡越漂亮.現(xiàn)按同樣的規(guī)律刺繡(小正方形的擺放規(guī)律相同),設第個圖形包含個小正方形,則的表達式為()A. B.C. D.8.曲線在處的切線的斜率為()A.-1 B.1C.2 D.39.我國古代的數(shù)學名著《九章算術》中有“衰分問題”:今有女子善織,日自倍,五日織五尺,問次日織幾問?其意為:一女子每天織布的尺數(shù)是前一天的2倍,5天共織布5尺,請問第二天織布的尺數(shù)是()A. B.C. D.10.若任取,則x與y差的絕對值不小于1的概率為()A. B.C. D.11.校慶當天,學校需要在靠墻的位置用圍欄圍起一個面積為200平方米的矩形場地.用來展示校友的書畫作品.靠墻一側不需要圍欄,則圍欄總長最小需要()米A.20 B.40C. D.12.雙曲線的光學性質為:如圖①,從雙曲線右焦點發(fā)出的光線經雙曲線鏡面反射,反射光線的反向延長線經過左焦點.我國首先研制成功的“雙曲線新聞燈”,就是利用了雙曲線的這個光學性質.某“雙曲線新聞燈”的軸截面是雙曲線的一部分,如圖②,其方程為,為其左、右焦點,若從右焦點發(fā)出的光線經雙曲線上的點和點反射后,滿足,,則該雙曲線的離心率為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.經過兩點的雙曲線的標準方程是________14.在空間直角坐標系中,點到x軸的距離為___________.15.展開式的常數(shù)項是________16.記為等差數(shù)列{}的前n項和,若,,則=_________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓的右焦點為F(,0),且點M(-,)在橢圓上.(1)求橢圓的方程;(2)直線l過點F,且與橢圓交于A,B兩點,過原點O作l的垂線,垂足為P,若,求λ的值.18.(12分)已知橢圓過點,且離心率.(1)求橢圓C的標準方程;(2)若動點在橢圓上,且在第一象限內,點分別為橢圓的左、右頂點,直線分別與橢圓C交于點,過作直線的平行線與橢圓交于點,問直線是否過定點,若經過定點,求出該定點的坐標;若不經過定點,請說明理由.19.(12分)某企業(yè)計劃新購買臺設備,并將購買的設備分配給名年齡不同(視為技術水平不同)的技工加工一批模具,因技術水平不同而加工出的產品數(shù)量不同,故產生的經濟效益也不同.若用變量表示不同技工的年齡,變量為相應的效益值(元),根據(jù)以往統(tǒng)計經驗,他們的工作效益滿足最小二乘法,且關于的線性回歸方程為(1)試預測一名年齡為歲的技工使用該設備所產生的經濟效益;(2)試根據(jù)的值判斷使用該批設備的技工人員所產生的的效益與技工年齡的相關性強弱(,則認為與線性相關性很強;,則認為與線性相關性不強);(3)若這批設備有兩道獨立運行的生產工序,且兩道工序出現(xiàn)故障的概率依次是,.若兩道工序都沒有出現(xiàn)故障,則生產成本不增加;若工序出現(xiàn)故障,則生產成本增加萬元;若工序出現(xiàn)故障,則生產成本增加萬元;若兩道工序都出現(xiàn)故障,則生產成本增加萬元.求這批設備增加的生產成本的期望參考數(shù)據(jù):,參考公式:回歸直線的斜率和截距的最小二乘估計分別為,,.20.(12分)已知橢圓M:的離心率為,左頂點A到左焦點F的距離為1,橢圓M上一點B位于第一象限,點B與點C關于原點對稱,直線CF與橢圓M的另一交點為D(1)求橢圓M的標準方程;(2)設直線AD的斜率為,直線AB的斜率為.求證:為定值21.(12分)如圖,在四棱錐中,,為的中點,連接.(1)求證:平面;(2)求平面與平面的夾角的余弦值.22.(10分)公差不為零的等差數(shù)列中,已知其前n項和為,若,且成等比數(shù)列(1)求數(shù)列的通項;(2)當時,求數(shù)列的前n和
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】根據(jù)基本初等函數(shù)的導數(shù)和求導法則判斷.【詳解】,,,,只有B正確.故選:B.【點睛】本題考查基本初等函數(shù)的導數(shù)公式,考查導數(shù)的運算法則,屬于基礎題.2、C【解析】由等差數(shù)列下標和性質可得.【詳解】因為,,所以.故選:C3、B【解析】列舉出所有選取的情況,再找出滿足題意的情況,根據(jù)古典概型的概率計算公式即可求解.【詳解】不妨用表示每種抽取情況,其中是指甲單位抽取1人的體重,代表從乙單位抽取人的體重.則所有的可能有16種,如下所示:,,,,,,,,,,,,,,,其中滿足題意的有6種:,,,,,故抽取的這2人中,恰好有1人顯著超重的概率為:.故選:.4、B【解析】根據(jù)互相垂直的兩直線的性質進行求解即可.【詳解】由,因此直線的斜率為,直線的斜率為,因為兩直線與互相垂直,所以,故選:B5、A【解析】由已知,結合等差數(shù)列前n項和公式、通項公式列方程組求公差即可.詳解】由題設,,解得.故選:A6、C【解析】根據(jù)雙曲線的漸近線求得的值.【詳解】依題意可知,雙曲線的漸近線為,所以.故選:C7、D【解析】先分別觀察給出正方體的個數(shù)為:1,,,,總結一般性的規(guī)律,將一般性的數(shù)列轉化為特殊的數(shù)列再求解【詳解】解:根據(jù)前面四個發(fā)現(xiàn)規(guī)律:,,,,,累加得:,,故選:【點睛】本題主要考查了歸納推理,屬于中檔題8、D【解析】先求解出導函數(shù),然后代入到導函數(shù)中,所求導數(shù)值即為切線斜率.【詳解】因為,所以,所以切線的斜率為.故選:D.9、C【解析】根據(jù)等比數(shù)列求和公式求出首項即可得解.【詳解】由題可得該女子每天織布的尺數(shù)成等比數(shù)列,設其首項為,公比為,則,解得所以第二天織布的尺數(shù)為.故選:C10、C【解析】根據(jù)題意,在平面直角坐標系中分析以及與差的絕對值不小于1所對應的平面區(qū)域,求出其面積,由幾何概型公式計算可得答案.【詳解】根據(jù)題意,,其對應的區(qū)域為正方形,其面積,若與差的絕對值不小于1,即,即或,對應的區(qū)域為圖中的陰影部分,其面積為,故與差的絕對值不小于1的概率.故選:C11、B【解析】在出矩形中,設,得到,結合基本不等式,即可求解【詳解】如圖所示,在矩形中,設,則,根據(jù)題意,可得矩形圍欄總長為因為,可得,當且僅當時,即時,等號成立,即圍欄總長最小需要米.故選:B.12、C【解析】連接,已知條件為,,設,由雙曲線定義表示出,用已知正切值求出,再由雙曲線定義得,這樣可由勾股定理求出(用表示),然后在中,應用勾股定理得出的關系,求得離心率【詳解】易知共線,共線,如圖,設,,則,由得,,又,所以,,所以,所以,由得,因為,故解得,則,在中,,即,所以故選:C二、填空題:本題共4小題,每小題5分,共20分。13、【解析】設雙曲線的標準方程將點坐標代入求參數(shù),即可確定標準方程.【詳解】令,則,可得,令,則,無解.故雙曲線的標準方程是.故答案為:.14、【解析】由空間直角坐標系中點到軸的距離為計算可得【詳解】解:空間直角坐標系中,點到軸的距離為故答案為:15、【解析】求出的通項公式,令的指數(shù)為0,即可求解.【詳解】的通項公式是,,依題意,令,所以的展開式中的常數(shù)項為.故答案為:.16、18【解析】根據(jù)等差數(shù)列通項和前n項和公式即可得到結果.【詳解】設等差數(shù)列的公差為,由,得,解得,所以故答案為:18三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】(1)求得,的值即可確定橢圓方程;(2)分類討論直線的斜率存在和斜率不存在兩種情況即可確定為定值【小問1詳解】由題意知:根據(jù)橢圓的定義得:,即,所以橢圓的標準方程為【小問2詳解】當直線的斜率不存在時,的方程是此時,所以當直線的斜率存在時,設直線的方程為,,,,由可得顯然△,則,因為,所以所以,此時綜上所述,為定值18、(1)(2)過定點,【解析】(1)根據(jù)橢圓上的點及離心率求出a,b即可;(2)設點,設直線的方程為,聯(lián)立方程,得到根與系數(shù)的關系,利用條件化簡,結合橢圓方程,求出即可得解.【小問1詳解】由,有,又,所以,橢圓C的標準方程為.【小問2詳解】設點,設直線的方程為.如圖,聯(lián)立,消有:,韋達定理有:由,所以,又,所以又,所以.又所以有,把代入有:,解得或2,又直線不過右端點,所以,則,所以直線過定點.19、(1)元;(2)使用該批設備的技工人員所產生的的效益與技工年齡的相關性強;(3)0.13萬元.【解析】(1)直接把代入線性回歸方程即得解;(2)先求出,再代公式求出相關系數(shù)比較即得解;(3)設增加的生產成本為ξ(萬元),則ξ的可能取值為0,2,3,5,求出對應的概率即得解.小問1詳解】解:當時,.所以預測一名年齡為歲的技工使用該設備所產生的經濟效益為元.【小問2詳解】解:由題得,所以,所以.因為,所以與線性相關性很強.所以使用該批設備的技工人員所產生的的效益與技工年齡的相關性強.【小問3詳解】解:設增加的生產成本為ξ(萬元),則ξ的可能取值為0,2,3,5P(ξ=0)=(1﹣0.02)×(1﹣0.03)=0.9506,P(ξ=2)=0.02×(1﹣0.03)=0.0194,P(ξ=3)=(1﹣0.02)×0.03=0.0294,P(ξ=5)=0.02×0.03=0.0006所以Eξ=0×0.9506+2×0.0194+3×0.0294+5×0.0006=0.13(萬元),所以這批設備增加的生產成本的期望為0.13萬元.20、(1)(2)證明見解析【解析】(1)根據(jù)橢圓離心率公式,結合橢圓的性質進行求解即可;(2)設出直線CF的方程與橢圓方程聯(lián)立,根據(jù)斜率公式,結合一元二次方程根與系數(shù)關系進行求解即可.【小問1詳解】(1),,∴,,,∴;【小問2詳解】設,,則,CF:聯(lián)立∴,∴【點睛】關鍵點睛:利用一元二次方程根與系數(shù)的關系是解題的關鍵.21、(1)證明過程見解析;(2).【解析】(1)根據(jù)平行四邊形的判定定理和性質,結合線面垂直的判定定理進行證明即可;(2)利用空間向量夾角公式進行求解即可.【小問1詳解】因為為的中點,所以,而,所以四邊形是平行四邊形,因此,因為,,為的中點,所以,,而,因為,所以,而平面,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 內分泌科科普宣教
- 山野徒步活動策劃方案(3篇)
- 活動策劃方案的總結(3篇)
- 藝術機構安全管理制度范本(3篇)
- 高警示藥物管理制度試題(3篇)
- 《GA 558.8-2005互聯(lián)網上網服務營業(yè)場所信息安全管理系統(tǒng)數(shù)據(jù)交換格式 第8部分:營業(yè)場所運行狀態(tài)基本數(shù)據(jù)交換格式》專題研究報告
- 《GAT 753.16-2008報警統(tǒng)計信息管理代碼 第16部分:警務監(jiān)督分類與代碼》專題研究報告深度
- 養(yǎng)老院家屬探訪制度
- 人力資源規(guī)劃與需求分析制度
- 企業(yè)信息發(fā)布與傳播制度
- 電大專科《公共行政學》簡答論述題題庫及答案
- 2025成人高考全國統(tǒng)一考試專升本英語試題及答案
- 代辦煙花爆竹經營許可證協(xié)議合同
- 國企員工總額管理辦法
- 企業(yè)級AI大模型平臺落地框架
- TD/T 1036-2013土地復墾質量控制標準
- 蘇教版六年級數(shù)學上冊全冊知識點歸納(全梳理)
- 車位包銷合同協(xié)議模板
- 病歷書寫規(guī)范版2025
- 中鐵物資采購投標
- 泄漏管理培訓課件
評論
0/150
提交評論