版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
湖北省黃岡市麻城實驗高中2025屆高三數(shù)學第一學期期末檢測模擬試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知定義在上的函數(shù),,,,則,,的大小關系為()A. B. C. D.2.設分別是雙線的左、右焦點,為坐標原點,以為直徑的圓與該雙曲線的兩條漸近線分別交于兩點(位于軸右側),且四邊形為菱形,則該雙曲線的漸近線方程為()A. B. C. D.3.為了進一步提升駕駛人交通安全文明意識,駕考新規(guī)要求駕校學員必須到街道路口執(zhí)勤站崗,協(xié)助交警勸導交通.現(xiàn)有甲、乙等5名駕校學員按要求分配到三個不同的路口站崗,每個路口至少一人,且甲、乙在同一路口的分配方案共有()A.12種 B.24種 C.36種 D.48種4.已知曲線且過定點,若且,則的最小值為().A. B.9 C.5 D.5.已知集合,,則A. B.C. D.6.設函數(shù),若函數(shù)有三個零點,則()A.12 B.11 C.6 D.37.曲線上任意一點處的切線斜率的最小值為()A.3 B.2 C. D.18.已知函數(shù),則()A.函數(shù)在上單調遞增 B.函數(shù)在上單調遞減C.函數(shù)圖像關于對稱 D.函數(shù)圖像關于對稱9.設,,則的值為()A. B.C. D.10.復數(shù),若復數(shù)在復平面內對應的點關于虛軸對稱,則等于()A. B. C. D.11.已知雙曲線的一條漸近線方程為,則雙曲線的離心率為()A. B. C. D.12.已知數(shù)列中,,若對于任意的,不等式恒成立,則實數(shù)的取值范圍為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.某校高二(4)班統(tǒng)計全班同學中午在食堂用餐時間,有7人用時為6分鐘,有14人用時7分鐘,有15人用時為8分鐘,還有4人用時為10分鐘,則高二(4)班全體同學用餐平均用時為____分鐘.14.《九章算術》卷5《商功》記載一個問題“今有圓堡瑽,周四丈八尺,高一丈一尺.問積幾何?答曰:二千一百一十二尺,術曰:周自相乘,以高乘之,十二而一”,這里所說的圓堡瑽就是圓柱體,它的體積為“周自相乘,以高乘之,十二而一”,就是說:圓堡瑽(圓柱體)的體積為(底面圓的周長的平方高),則由此可推得圓周率的取值為________.15.已知無蓋的圓柱形桶的容積是立方米,用來做桶底和側面的材料每平方米的價格分別為30元和20元,那么圓桶造價最低為________元.16.已知為矩形的對角線的交點,現(xiàn)從這5個點中任選3個點,則這3個點不共線的概率為________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)設直線與拋物線交于兩點,與橢圓交于兩點,設直線(為坐標原點)的斜率分別為,若.(1)證明:直線過定點,并求出該定點的坐標;(2)是否存在常數(shù),滿足?并說明理由.18.(12分)某大型公司為了切實保障員工的健康安全,貫徹好衛(wèi)生防疫工作的相關要求,決定在全公司范圍內舉行一次普查,為此需要抽驗1000人的血樣進行化驗,由于人數(shù)較多,檢疫部門制定了下列兩種可供選擇的方案.方案①:將每個人的血分別化驗,這時需要驗1000次.方案②:按個人一組進行隨機分組,把從每組個人抽來的血混合在一起進行檢驗,如果每個人的血均為陰性,則驗出的結果呈陰性,這個人的血只需檢驗一次(這時認為每個人的血化驗次);否則,若呈陽性,則需對這個人的血樣再分別進行一次化驗,這樣,該組個人的血總共需要化驗次.假設此次普查中每個人的血樣化驗呈陽性的概率為,且這些人之間的試驗反應相互獨立.(1)設方案②中,某組個人的每個人的血化驗次數(shù)為,求的分布列;(2)設,試比較方案②中,分別取2,3,4時,各需化驗的平均總次數(shù);并指出在這三種分組情況下,相比方案①,化驗次數(shù)最多可以平均減少多少次?(最后結果四舍五入保留整數(shù))19.(12分)在平面直角坐標系中,曲線(為參數(shù)),以坐標原點為極點,軸的正半軸為極軸且取相同的單位長度建立極坐標系,曲線的極坐標方程為.(1)求曲線的普通方程和曲線的普通方程;(2)若P,Q分別為曲線,上的動點,求的最大值.20.(12分)已知函數(shù),其中為自然對數(shù)的底數(shù),.(1)若曲線在點處的切線與直線平行,求的值;(2)若,問函數(shù)有無極值點?若有,請求出極值點的個數(shù);若沒有,請說明理由.21.(12分)有最大值,且最大值大于.(1)求的取值范圍;(2)當時,有兩個零點,證明:.(參考數(shù)據:)22.(10分)設函數(shù),().(1)若曲線在點處的切線方程為,求實數(shù)a、m的值;(2)若對任意恒成立,求實數(shù)a的取值范圍;(3)關于x的方程能否有三個不同的實根?證明你的結論.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】
先判斷函數(shù)在時的單調性,可以判斷出函數(shù)是奇函數(shù),利用奇函數(shù)的性質可以得到,比較三個數(shù)的大小,然后根據函數(shù)在時的單調性,比較出三個數(shù)的大小.【詳解】當時,,函數(shù)在時,是增函數(shù).因為,所以函數(shù)是奇函數(shù),所以有,因為,函數(shù)在時,是增函數(shù),所以,故本題選D.【點睛】本題考查了利用函數(shù)的單調性判斷函數(shù)值大小問題,判斷出函數(shù)的奇偶性、單調性是解題的關鍵.2、B【解析】
由于四邊形為菱形,且,所以為等邊三角形,從而可得漸近線的傾斜角,求出其斜率.【詳解】如圖,因為四邊形為菱形,,所以為等邊三角形,,兩漸近線的斜率分別為和.故選:B【點睛】此題考查的是求雙曲線的漸近線方程,利用了數(shù)形結合的思想,屬于基礎題.3、C【解析】
先將甲、乙兩人看作一個整體,當作一個元素,再將這四個元素分成3個部分,每一個部分至少一個,再將這3部分分配到3個不同的路口,根據分步計數(shù)原理可得選項.【詳解】把甲、乙兩名交警看作一個整體,個人變成了4個元素,再把這4個元素分成3部分,每部分至少有1個人,共有種方法,再把這3部分分到3個不同的路口,有種方法,由分步計數(shù)原理,共有種方案。故選:C.【點睛】本題主要考查排列與組合,常常運用捆綁法,插空法,先分組后分配等一些基本思想和方法解決問題,屬于中檔題.4、A【解析】
根據指數(shù)型函數(shù)所過的定點,確定,再根據條件,利用基本不等式求的最小值.【詳解】定點為,,當且僅當時等號成立,即時取得最小值.故選:A【點睛】本題考查指數(shù)型函數(shù)的性質,以及基本不等式求最值,意在考查轉化與變形,基本計算能力,屬于基礎題型.5、D【解析】
因為,,所以,,故選D.6、B【解析】
畫出函數(shù)的圖象,利用函數(shù)的圖象判斷函數(shù)的零點個數(shù),然后轉化求解,即可得出結果.【詳解】作出函數(shù)的圖象如圖所示,令,由圖可得關于的方程的解有兩個或三個(時有三個,時有兩個),所以關于的方程只能有一個根(若有兩個根,則關于的方程有四個或五個根),由,可得的值分別為,則故選B.【點睛】本題考查數(shù)形結合以及函數(shù)與方程的應用,考查轉化思想以及計算能力,屬于常考題型.7、A【解析】
根據題意,求導后結合基本不等式,即可求出切線斜率,即可得出答案.【詳解】解:由于,根據導數(shù)的幾何意義得:,即切線斜率,當且僅當?shù)忍柍闪?,所以上任意一點處的切線斜率的最小值為3.故選:A.【點睛】本題考查導數(shù)的幾何意義的應用以及運用基本不等式求最值,考查計算能力.8、C【解析】
依題意可得,即函數(shù)圖像關于對稱,再求出函數(shù)的導函數(shù),即可判斷函數(shù)的單調性;【詳解】解:由,,所以函數(shù)圖像關于對稱,又,在上不單調.故正確的只有C,故選:C【點睛】本題考查函數(shù)的對稱性的判定,利用導數(shù)判斷函數(shù)的單調性,屬于基礎題.9、D【解析】
利用倍角公式求得的值,利用誘導公式求得的值,利用同角三角函數(shù)關系式求得的值,進而求得的值,最后利用正切差角公式求得結果.【詳解】,,,,,,,,故選:D.【點睛】該題考查的是有關三角函數(shù)求值問題,涉及到的知識點有誘導公式,正切倍角公式,同角三角函數(shù)關系式,正切差角公式,屬于基礎題目.10、A【解析】
先通過復數(shù)在復平面內對應的點關于虛軸對稱,得到,再利用復數(shù)的除法求解.【詳解】因為復數(shù)在復平面內對應的點關于虛軸對稱,且復數(shù),所以所以故選:A【點睛】本題主要考查復數(shù)的基本運算和幾何意義,屬于基礎題.11、B【解析】
由題意得出的值,進而利用離心率公式可求得該雙曲線的離心率.【詳解】雙曲線的漸近線方程為,由題意可得,因此,該雙曲線的離心率為.故選:B.【點睛】本題考查利用雙曲線的漸近線方程求雙曲線的離心率,利用公式計算較為方便,考查計算能力,屬于基礎題.12、B【解析】
先根據題意,對原式進行化簡可得,然后利用累加法求得,然后不等式恒成立轉化為恒成立,再利用函數(shù)性質解不等式即可得出答案.【詳解】由題,即由累加法可得:即對于任意的,不等式恒成立即令可得且即可得或故選B【點睛】本題主要考查了數(shù)列的通項的求法以及函數(shù)的性質的運用,屬于綜合性較強的題目,解題的關鍵是能夠由遞推數(shù)列求出通項公式和后面的轉化函數(shù),屬于難題.二、填空題:本題共4小題,每小題5分,共20分。13、7.5【解析】
分別求出所有人用時總和再除以總人數(shù)即可得到平均數(shù).【詳解】故答案為:7.5【點睛】此題考查求平均數(shù),關鍵在于準確計算出所有數(shù)據之和,易錯點在于概念辨析不清導致計算出錯.14、3【解析】
根據圓堡瑽(圓柱體)的體積為(底面圓的周長的平方高),可得,進而可求出的值【詳解】解:設圓柱底面圓的半徑為,圓柱的高為,由題意知,解得.故答案為:3.【點睛】本題主要考查了圓柱的體積公式.只要能看懂題目意思,結合方程的思想即可求出結果.15、【解析】
設桶的底面半徑為,用表示出桶的總造價,利用基本不等式得出最小值.【詳解】設桶的底面半徑為,高為,則,故,圓通的造價為解法一:當且僅當,即時取等號.解法二:,則,令,即,解得,此函數(shù)在單調遞增;令,即,解得,此函數(shù)在上單調遞減;令,即,解得,即當時,圓桶的造價最低.所以故答案為:【點睛】本題考查了基本不等式的應用,注意驗證等號成立的條件,屬于基礎題.16、【解析】
基本事件總數(shù),這3個點共線的情況有兩種和,由此能求出這3個點不共線的概率.【詳解】解:為矩形的對角線的交點,現(xiàn)從,,,,這5個點中任選3個點,基本事件總數(shù),這3個點共線的情況有兩種和,這3個點不共線的概率為.故答案為:.【點睛】本題考查概率的求法,考查對立事件概率計算公式等基礎知識,考查運算求解能力,屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)證明見解析(0,2);(2)存在,理由見解析【解析】
(1)設直線l的方程為y=kx+b代入拋物線的方程,利用OA⊥OB,求出b,即可知直線過定點(2)由斜率公式分別求出,,聯(lián)立直線與拋物線,橢圓,再由根與系數(shù)的關系得,,,代入,,化簡即可求解.【詳解】(1)證明:由題知,直線l的斜率存在且不過原點,故設由可得,.,,故所以直線l的方程為故直線l恒過定點.(2)由(1)知設由可得,,即存在常數(shù)滿足題意.【點睛】本題主要考查了直線與拋物線、橢圓的位置關系,直線過定點問題,考查學生分析解決問題的能力,屬于中檔題.18、(1)分布列見解析;(2)406.【解析】
(1)計算個人的血混合后呈陰性反應的概率為,呈陽性反應的概率為,得到分布列.(2)計算,代入數(shù)據計算比較大小得到答案.【詳解】(1)設每個人的血呈陰性反應的概率為,則.所以個人的血混合后呈陰性反應的概率為,呈陽性反應的概率為.依題意可知,,所以的分布列為:(2)方案②中.結合(1)知每個人的平均化驗次數(shù)為:時,,此時1000人需要化驗的總次數(shù)為690次,時,,此時1000人需要化驗的總次數(shù)為604次,時,,此時1000人需要化驗的次數(shù)總為594次,即時化驗次數(shù)最多,時次數(shù)居中,時化驗次數(shù)最少,而采用方案①則需化驗1000次,故在這三種分組情況下,相比方案①,當時化驗次數(shù)最多可以平均減少次.【點睛】本題考查了分布列,數(shù)學期望,意在考查學生的計算能力和應用能力.19、(1),;(2)【解析】試題分析:(1)由消去參數(shù),可得的普通方程,由可得的普通方程;(2)設為曲線上一點,點到曲線的圓心的距離,結合可得最值,的最大值為,從而得解.試題解析:(1)的普通方程為.∵曲線的極坐標方程為,∴曲線的普通方程為,即.(2)設為曲線上一點,則點到曲線的圓心的距離.∵,∴當時,d有最大值.又∵P,Q分別為曲線,曲線上動點,∴的最大值為.20、(1)(2)沒有,理由見解析【解析】
(1)求導,研究函數(shù)在x=0處的導數(shù),等于切線斜率,即得解;(2)對f(x)求導,構造,可證得,得到,即得解【詳解】(1)由題意得,∵曲線在點處的切線與直線平行,∴切線的斜率為,解得.(2)當時,,,設,則,則函數(shù)在區(qū)間上單調遞減,在區(qū)間上單調遞增,又函數(shù),故恒成立,∴函數(shù)在定義域內單調遞增,函數(shù)不存在極值點.【點睛】本題考查了導數(shù)在切線問題和函數(shù)極值問題中的應用,考查了學生綜合分析,轉化劃歸,數(shù)學運算的能力,屬于中檔題.21、(1);(2)證明見解析.【解析】
(1)求出函數(shù)的定義域為,,分和兩種情況討論,分析函數(shù)的單調性,求出函數(shù)的最大值,即可得出關于實數(shù)的不等式,進而可求得實數(shù)的取值范圍;(2)利用導數(shù)分析出函數(shù)在上遞增,在上遞減,可得出,由,構造函數(shù),證明出,進而得出,再由函數(shù)在區(qū)間上的單調性可證得結論.【詳解】(1)函數(shù)的定義域為,且.當時,對任意的,,此時函數(shù)在上為增函數(shù),函數(shù)為最大值;當時,令,得.當時,,此時函數(shù)單調遞增;當時,,此時函數(shù)單調遞減.所以,函數(shù)在處取得極大值,亦即最大值,即,解得.綜上所述,實數(shù)的取值范圍是;(2)當時,,定義域為,,當時,;當時,.所以,函數(shù)的
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025河南平煤神馬平綠置業(yè)有限責任公司招聘3人參考筆試題庫附答案解析
- 2025四川成都市青羊區(qū)新華少城社區(qū)衛(wèi)生服務中心招聘3人參考筆試題庫附答案解析
- 2025恒豐銀行南京分行社會招聘29人參考筆試題庫附答案解析
- 2025廣西北海市中日友誼中學秋季學期教師招聘1人備考考試試題及答案解析
- 2025年哈爾濱市南崗區(qū)殘疾人聯(lián)合會補充招聘殘疾人專職委員2人模擬筆試試題及答案解析
- 2025江蘇蘇州大學科研助理崗位招聘10人備考筆試試題及答案解析
- 網咖投資合同范本
- 網格員用工協(xié)議書
- 職場綠化合同協(xié)議
- 聯(lián)保勞動合同范本
- 工業(yè)區(qū)位因素與工業(yè)地域聯(lián)系-完整版課件
- 中職《哲學與人生》教學課件-第8課-現(xiàn)象本質與明辨是非
- 培訓機構咨詢百問百答第一期
- FP93中文操作說明pdf
- 混凝土課程設計-鋼筋混凝土結構樓蓋課程設計
- 復旦大學基礎物理實驗期末模擬題庫
- BT-GLKZ-2x系列微電腦鍋爐控制器
- 識記并正確書寫現(xiàn)代規(guī)范漢字教案
- 施工現(xiàn)場安全生產檢查制度
- 中央空調報價模板
- 某工業(yè)廠房BIM實施方案
評論
0/150
提交評論