2025屆海南省臨高縣波蓮中學(xué)高二數(shù)學(xué)第一學(xué)期期末學(xué)業(yè)質(zhì)量監(jiān)測模擬試題含解析_第1頁
2025屆海南省臨高縣波蓮中學(xué)高二數(shù)學(xué)第一學(xué)期期末學(xué)業(yè)質(zhì)量監(jiān)測模擬試題含解析_第2頁
2025屆海南省臨高縣波蓮中學(xué)高二數(shù)學(xué)第一學(xué)期期末學(xué)業(yè)質(zhì)量監(jiān)測模擬試題含解析_第3頁
2025屆海南省臨高縣波蓮中學(xué)高二數(shù)學(xué)第一學(xué)期期末學(xué)業(yè)質(zhì)量監(jiān)測模擬試題含解析_第4頁
2025屆海南省臨高縣波蓮中學(xué)高二數(shù)學(xué)第一學(xué)期期末學(xué)業(yè)質(zhì)量監(jiān)測模擬試題含解析_第5頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2025屆海南省臨高縣波蓮中學(xué)高二數(shù)學(xué)第一學(xué)期期末學(xué)業(yè)質(zhì)量監(jiān)測模擬試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知的周長為,頂點、的坐標分別為、,則點的軌跡方程為()A. B.C. D.2.已知,若與的展開式中的常數(shù)項相等,則()A.1 B.3C.6 D.93.下邊程序框圖的算法思路源于我國古代數(shù)學(xué)名著《九章算術(shù)》中的“更相減損術(shù)”.執(zhí)行該程序框圖,如果輸入a=102,b=238,則輸出的a的值為()A.17 B.34C.36 D.684.設(shè)直線,.若,則的值為()A.或 B.或C. D.5.等差數(shù)列中,若,,則等于()A. B.C. D.6.已知直線和圓,則“”是“直線與圓相切”的().A.必要不充分條件 B.充分不必要條件C.充要條件 D.既不充分也不必要條件7.拋物線的焦點為F,點為該拋物線上的動點,點A是拋物線的準線與坐標軸的交點,則的最大值是()A.2 B.C. D.8.命題“,”的否定形式是()A., B.,C., D.,9.復(fù)數(shù)的共軛復(fù)數(shù)是A. B.C. D.10.設(shè)雙曲線的離心率為,則下列命題中是真命題的為()A.越大,雙曲線開口越小 B.越小,雙曲線開口越大C.越大,雙曲線開口越大 D.越小,雙曲線開口越大11.接種疫苗是預(yù)防控制新冠疫情最有效的方法,我國自2021年1月9日起實施全民免費接種新冠疫苗并持續(xù)加快推進接種工作.某地為方便居民接種,共設(shè)置了A、B、C三個新冠疫苗接種點,每位接種者可去任一個接種點接種.若甲、乙兩人去接種新冠疫苗,則兩人不在同一接種點接種疫苗的概率為()A. B.C. D.12.已知橢圓與圓在第二象限的交點是點,是橢圓的左焦點,為坐標原點,到直線的距離是,則橢圓的離心率是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.若函數(shù)在處有極值,則的值為___________.14.拋物線的準線方程為_______.15.已知圓,則圓心坐標為______.16.在平面直角坐標系中,直線與橢圓交于兩點,且,則該橢圓的離心率為__________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù),且a0(1)當a=1時,求函數(shù)f(x)的單調(diào)區(qū)間;(2)記函數(shù),若函數(shù)有兩個零點,①求實數(shù)a的取值范圍;②證明:18.(12分)自我國爆發(fā)新冠肺炎疫情以來,各地醫(yī)療單位都加緊了醫(yī)療用品的生產(chǎn).某醫(yī)療器械廠統(tǒng)計了口罩生產(chǎn)車間每名工人的生產(chǎn)速度,并將所得數(shù)據(jù)分成五組并繪制出如圖所示的頻率分布直方圖.已知前四組的頻率成等差數(shù)列,第五組與第二組的頻率相等(1)估計口罩生產(chǎn)車間工人生產(chǎn)速度的中位數(shù)(結(jié)果寫成分數(shù)的形式);(2)為了解該車間工人的生產(chǎn)速度是否與他們的工作經(jīng)驗有關(guān),現(xiàn)從車間所有工人中隨機抽樣調(diào)查了5名工人的生產(chǎn)速度以及他們的工齡(參加工作的年限),數(shù)據(jù)如下表:工齡x(單位:年)4681012生產(chǎn)速度y(單位:件/小時)4257626267根據(jù)上述數(shù)據(jù)求每名工人的生產(chǎn)速度y關(guān)于他的工齡x的回歸方程,并據(jù)此估計該車間某位有16年工齡的工人的生產(chǎn)速度附:回歸方程中斜率和截距的最小二乘估計公式為:,19.(12分)已知橢圓過點,離心率為(1)求橢圓的標準方程;(2)過橢圓的上頂點作直線l交拋物線于A,B兩點,O為坐標原點①求證:;②設(shè)OA,OB分別與橢圓相交于C,D兩點,過點O作直線CD的垂線OH,垂足為H,證明:為定值20.(12分)已知各項均為正數(shù)的等比數(shù)列{}的前4項和為15,且.(1)求{}的通項公式;(2)若,記數(shù)列{}前n項和為,求.21.(12分)如圖,在平面直角坐標系xOy中,已知拋物線C:y2=4x經(jīng)過點A(1,2),直線l:y=kx+b與拋物線C交于M,N兩點.(1)若,求直線l的方程;(2)當AM⊥AN時,若對任意滿足條件的實數(shù)k,都有b=mk+n(m,n為常數(shù)),求m+2n的值.22.(10分)已知等差數(shù)列的前項和為,數(shù)列是等比數(shù)列,,,,.(1)求數(shù)列和的通項公式;(2)若,設(shè)數(shù)列的前項和為,求.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】分析可知點的軌跡是除去長軸端點的橢圓,求出、的值,結(jié)合橢圓焦點的位置可得出頂點的軌跡方程.【詳解】由已知可得,,且、、三點不共線,故點的軌跡是以、為焦點,且除去長軸端點的橢圓,由已知可得,得,,則,因此,點的軌跡方程為.故選:D.2、B【解析】根據(jù)二項展開式的通項公式即可求出【詳解】的展開式中的常數(shù)項為,而的展開式中的常數(shù)項為,所以,又,所以故選:B3、B【解析】根據(jù)程序框圖所示代入運行即可.【詳解】初始輸入:;第一次運算:;第二次運算:;第三次運算:;第四次運算:;結(jié)束,輸出34.故選:B.4、A【解析】由兩直線垂直可得出關(guān)于實數(shù)的等式,即可解得實數(shù)的值.【詳解】因為,則,解得或.故選:A.5、C【解析】由等差數(shù)列下標和性質(zhì)可得.【詳解】因為,,所以.故選:C6、B【解析】首先求出直線與圓相切時的取值,再根據(jù)充分必要條件的定義判斷.【詳解】若直線與圓相切,則圓心到直線的距離,則,解得,所以“”是“直線與圓相切”的充分不必要條件.故選:B【點睛】本題考查直線與圓的位置關(guān)系,充分必要條件,重點考查計算,理解能力,屬于基礎(chǔ)題型.7、B【解析】設(shè)直線的傾斜角為,設(shè)垂直于準線于,由拋物線的性質(zhì)可得,則,當直線PA與拋物線相切時,最小,取得最大值,設(shè)出直線方程得到直線和拋物線相切時的點P的坐標,然后進行計算得到結(jié)果.【詳解】設(shè)直線的傾斜角為,設(shè)垂直于準線于,由拋物線的性質(zhì)可得,所以則,當最小時,則值最大,所以當直線PA與拋物線相切時,θ最大,即最小,由題意可得,設(shè)切線PA的方程為:,,整理可得,,可得,將代入,可得,所以,即P的橫坐標為1,即P的坐標,所以,,所以的最大值為:,故選:B【點睛】關(guān)鍵點睛:本題主要考查了拋物線的簡單性質(zhì).解題的關(guān)鍵是利用了拋物線的定義.一般和拋物線有關(guān)的小題,很多時可以應(yīng)用結(jié)論來處理的;平時練習(xí)時應(yīng)多注意拋物線的結(jié)論的總結(jié)和應(yīng)用.尤其和焦半徑聯(lián)系的題目,一般都和定義有關(guān),實現(xiàn)點點距和點線距的轉(zhuǎn)化8、A【解析】特稱命題的否定是全稱命題【詳解】的否定形式是故選:A9、B【解析】因,故其共軛復(fù)數(shù).應(yīng)選B.考點:復(fù)數(shù)的概念及運算.10、C【解析】根據(jù)雙曲線的性質(zhì)結(jié)合離心率對雙曲線開口大小的影響即可得解.【詳解】解:對于A,越大,雙曲線開口越大,故A錯誤;對于B,越小,雙曲線開口越小,故B錯誤;對于C,由,越大,則越大,雙曲線開口越大,故C正確;對于D,越小,則越小,雙曲線開口越小,故D錯誤.故選:C.11、C【解析】利用古典概型的概率公式可求出結(jié)果【詳解】由題知,基本事件總數(shù)為甲、乙兩人不在同一接種點接種疫苗的基本事件數(shù)為由古典概型概率計算公式可得所求概率故選:12、B【解析】連接,得到,作,求得,利用橢圓的定義,可求得,在直角中,利用勾股定理,整理的,即可求解橢圓的離心率.【詳解】如圖所示,連接,因為圓,可得,過點作,可得,且,由橢圓的定義,可得,所以,在直角中,可得,即,整理得,兩側(cè)同除,可得,解得或,又因為,所以橢圓的離心率為.故選:B【點睛】本題主要考查了橢圓的定義,直角三角形的勾股定理,以及橢圓的離心率的求解,其中解答中熟記橢圓的定義,結(jié)合直角三角形的勾股定理,列出關(guān)于的方程是解答的關(guān)鍵,著重考查了推理與計算能力,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、2或6【解析】由解析式得到導(dǎo)函數(shù),結(jié)合是函數(shù)極值點,即可求的值.【詳解】由,得,因為函數(shù)在處有極值,所以,即,解得2或6.經(jīng)檢驗,2或6滿足題意.故答案為:2或6.14、【解析】由拋物線的標準方程為x2=y,得拋物線是焦點在y軸正半軸的拋物線,2p=1,∴其準線方程是y=,故答案為15、【解析】將圓的一般方程配方程標準方程即可.【詳解】圓,即,它的圓心坐標是.故答案為:.16、【解析】直線與橢圓相交,求交點,利用列式求解即可.【詳解】聯(lián)立方程得,因為,所以,即,所以,.故答案為:.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)函數(shù)f(x)在區(qū)間(0,+)上單調(diào)遞減(2)①;②證明見解析【解析】(1)求導(dǎo),求解可得導(dǎo)函數(shù)恒小于等于0,即得證;(2)①分析函數(shù)的單調(diào)性,由有兩個實數(shù)根可求解;②由(1)得2lnxx?,再利用其放縮可得,由此有,問題得證.【小問1詳解】當a=1時,函數(shù)因為所以函數(shù)f(x)在區(qū)間(0,+)上單調(diào)遞減;【小問2詳解】(i)由已知可得方程有兩個實數(shù)根記,則.當時,,函數(shù)k(x)是增函數(shù);當時,,函數(shù)k(x)是減函數(shù),所以,故(ii)易知,當x1時,,故.由(1)可知,當0x1時,,所以2lnxx?由,得,所以因為,所以18、(1)(2)80件/小時【解析】(1)先利用等差數(shù)列的通項公式和頻率分布直方圖各矩形的面積之和為1求出各組頻率,再利用頻率分布直方圖求中位數(shù);(2)先求出、,利用最小二乘法求出回歸直線方程,再進行預(yù)測其生產(chǎn)速度.【小問1詳解】解:設(shè)前4組的頻率分別為,,,,公差為,由頻率分布直方圖,得,即,解得,則,,所以中位數(shù)為.【小問2詳解】解:由題意,得,,由所給公式,得,,所以回歸直線方程為,則當時,,即估計該車間某位有16年工齡的工人的生產(chǎn)速度為80件/小時.19、(1)(2)①證明見解析;②證明見解析【解析】(1)根據(jù)離心率及過點求出求解即可;(2)①設(shè)直線l的方程為,利用向量的數(shù)量積計算證明即可;②設(shè)直線CD方程為,利用求出,再由點O到直線CD的距離即可求證.【小問1詳解】因為,所以,又因為,解得,,所以橢圓的方程為;【小問2詳解】①證明:設(shè),,依題意,直線l斜率存在,設(shè)直線l的方程為,聯(lián)立方程,消去y得,所以,又因為,所以,因此,②證明:設(shè),,設(shè)直線CD方程為,因為,所以,則,聯(lián)立,得當時,,則所以,即滿足則,即為定值20、(1)(2)【解析】(1)設(shè)正項的等比數(shù)列的公比為,根據(jù)題意列出方程組,求得的值,即可求得數(shù)列的通項公式;(2)由,結(jié)合乘公比錯位相減求和,即可求解.小問1詳解】解:設(shè)正項的等比數(shù)列的公比為,顯然不為1,因為等比數(shù)列前4項和為且,可得,解得,所以數(shù)列的通項公式為.【小問2詳解】解:由,所以,可得,兩式相減得,所以.21、(1)(2)3或【解析】(1)由可得,則可得直線為,設(shè),然后將直線方程代入拋物線方程中消去,再利用根與系數(shù)的關(guān)系,由可得,三個式子結(jié)合可求出,從而可得直線方程,(2)將直線方程代入拋物線方程中消去,再利用根與系數(shù)的關(guān)系表示出,再結(jié)合直線方程表示出,由AM⊥AN可得,化簡結(jié)合前面的式子可求出或,從而可可求出的值,進而可求得答案【小問1詳解】因為A(1,2),,所以,則直線為,設(shè),

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論