江蘇省揚州市儀征市新集初級中學2023-2024學年中考數(shù)學考試模擬沖刺卷含解析_第1頁
江蘇省揚州市儀征市新集初級中學2023-2024學年中考數(shù)學考試模擬沖刺卷含解析_第2頁
江蘇省揚州市儀征市新集初級中學2023-2024學年中考數(shù)學考試模擬沖刺卷含解析_第3頁
江蘇省揚州市儀征市新集初級中學2023-2024學年中考數(shù)學考試模擬沖刺卷含解析_第4頁
江蘇省揚州市儀征市新集初級中學2023-2024學年中考數(shù)學考試模擬沖刺卷含解析_第5頁
已閱讀5頁,還剩17頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領

文檔簡介

江蘇省揚州市儀征市新集初級中學2023-2024學年中考數(shù)學考試模擬沖刺卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.如圖,二次函數(shù)的圖象開口向下,且經(jīng)過第三象限的點若點P的橫坐標為,則一次函數(shù)的圖象大致是A. B. C. D.2.已知圖中所有的小正方形都全等,若在右圖中再添加一個全等的小正方形得到新的圖形,使新圖形是中心對稱圖形,則正確的添加方案是()A. B. C. D.3.如圖,在矩形ABCD中,AD=AB,∠BAD的平分線交BC于點E,DH⊥AE于點H,連接BH并延長交CD于點F,連接DE交BF于點O,下列結(jié)論:①∠AED=∠CED;②OE=OD;③BH=HF;④BC﹣CF=2HE;⑤AB=HF,其中正確的有()A.2個 B.3個 C.4個 D.5個4.如圖,在△ABC中,∠C=90°,AD是∠BAC的角平分線,若CD=2,AB=8,則△ABD的面積是()A.6 B.8 C.10 D.125.在一張考卷上,小華寫下如下結(jié)論,記正確的個數(shù)是m,錯誤的個數(shù)是n,你認為有公共頂點且相等的兩個角是對頂角若,則它們互余A.4 B. C. D.6.如圖是由若干個小正方體塊搭成的幾何體的俯視圖,小正方塊中的數(shù)字表示在該位置的小正方體塊的個數(shù),那么這個幾何體的主視圖是()A. B. C. D.7.下列各數(shù)中最小的是()A.0 B.1 C.﹣ D.﹣π8.在一組數(shù)據(jù):1,2,4,5中加入一個新數(shù)3之后,新數(shù)據(jù)與原數(shù)據(jù)相比,下列說法正確的是()A.中位數(shù)不變,方差不變 B.中位數(shù)變大,方差不變C.中位數(shù)變小,方差變小 D.中位數(shù)不變,方差變小9.某市6月份日平均氣溫統(tǒng)計如圖所示,那么在日平均氣溫這組數(shù)據(jù)中,中位數(shù)是()A.8 B.10 C.21 D.2210.⊙O是一個正n邊形的外接圓,若⊙O的半徑與這個正n邊形的邊長相等,則n的值為()A.3 B.4 C.6 D.8二、填空題(共7小題,每小題3分,滿分21分)11.A,B兩市相距200千米,甲車從A市到B市,乙車從B市到A市,兩車同時出發(fā),已知甲車速度比乙車速度快15千米/小時,且甲車比乙車早半小時到達目的地.若設乙車的速度是x千米/小時,則根據(jù)題意,可列方程____________.12.如圖,在四邊形ABCD中,點E、F分別是邊AB、AD的中點,BC=15,CD=9,EF=6,∠AFE=50°,則∠ADC的度數(shù)為_____.13.因式分解:x2﹣4=.14.如圖,某城市的電視塔AB坐落在湖邊,數(shù)學老師帶領學生隔湖測量電視塔AB的高度,在點M處測得塔尖點A的仰角∠AMB為22.5°,沿射線MB方向前進200米到達湖邊點N處,測得塔尖點A在湖中的倒影A′的俯角∠A′NB為45°,則電視塔AB的高度為______米(結(jié)果保留根號).15.如圖,路燈距離地面6,身高1.5的小明站在距離燈的底部(點)15的處,則小明的影子的長為________.16.若向北走5km記作﹣5km,則+10km的含義是_____.17.如圖,矩形ABCD中,AB=1,BC=2,點P從點B出發(fā),沿B-C-D向終點D勻速運動,設點P走過的路程為x,△ABP的面積為S,能正確反映S與x之間函數(shù)關(guān)系的圖象是()A. B. C. D.三、解答題(共7小題,滿分69分)18.(10分)如圖,在圖中求作⊙P,使⊙P滿足以線段MN為弦且圓心P到∠AOB兩邊的距離相等.(要求:尺規(guī)作圖,不寫作法,保留作圖痕跡,并把作圖痕跡用黑色簽字筆加黑)19.(5分)在△ABC中,AB=AC≠BC,點D和點A在直線BC的同側(cè),BD=BC,∠BAC=α,∠DBC=β,且α+β=110°,連接AD,求∠ADB的度數(shù).(不必解答)小聰先從特殊問題開始研究,當α=90°,β=30°時,利用軸對稱知識,以AB為對稱軸構(gòu)造△ABD的軸對稱圖形△ABD′,連接CD′(如圖1),然后利用α=90°,β=30°以及等邊三角形等相關(guān)知識便可解決這個問題.請結(jié)合小聰研究問題的過程和思路,在這種特殊情況下填空:△D′BC的形狀是三角形;∠ADB的度數(shù)為.在原問題中,當∠DBC<∠ABC(如圖1)時,請計算∠ADB的度數(shù);在原問題中,過點A作直線AE⊥BD,交直線BD于E,其他條件不變?nèi)鬊C=7,AD=1.請直接寫出線段BE的長為.20.(8分)(1)(問題發(fā)現(xiàn))小明遇到這樣一個問題:如圖1,△ABC是等邊三角形,點D為BC的中點,且滿足∠ADE=60°,DE交等邊三角形外角平分線CE所在直線于點E,試探究AD與DE的數(shù)量關(guān)系.(1)小明發(fā)現(xiàn),過點D作DF//AC,交AC于點F,通過構(gòu)造全等三角形,經(jīng)過推理論證,能夠使問題得到解決,請直接寫出AD與DE的數(shù)量關(guān)系:;(2)(類比探究)如圖2,當點D是線段BC上(除B,C外)任意一點時(其它條件不變),試猜想AD與DE之間的數(shù)量關(guān)系,并證明你的結(jié)論.(3)(拓展應用)當點D在線段BC的延長線上,且滿足CD=BC(其它條件不變)時,請直接寫出△ABC與△ADE的面積之比.21.(10分)計算下列各題:(1)tan45°?sin60°?cos30°;(2)sin230°+sin45°?tan30°.22.(10分)AB為⊙O直徑,C為⊙O上的一點,過點C的切線與AB的延長線相交于點D,CA=CD.(1)連接BC,求證:BC=OB;(2)E是中點,連接CE,BE,若BE=2,求CE的長.23.(12分)如圖所示,一堤壩的坡角,坡面長度米(圖為橫截面),為了使堤壩更加牢固,一施工隊欲改變堤壩的坡面,使得坡面的坡角,則此時應將壩底向外拓寬多少米?(結(jié)果保留到米)(參考數(shù)據(jù):,,)24.(14分)如圖1,二次函數(shù)y=ax2﹣2ax﹣3a(a<0)的圖象與x軸交于A、B兩點(點A在點B的右側(cè)),與y軸的正半軸交于點C,頂點為D.(1)求頂點D的坐標(用含a的代數(shù)式表示);(2)若以AD為直徑的圓經(jīng)過點C.①求拋物線的函數(shù)關(guān)系式;②如圖2,點E是y軸負半軸上一點,連接BE,將△OBE繞平面內(nèi)某一點旋轉(zhuǎn)180°,得到△PMN(點P、M、N分別和點O、B、E對應),并且點M、N都在拋物線上,作MF⊥x軸于點F,若線段MF:BF=1:2,求點M、N的坐標;③點Q在拋物線的對稱軸上,以Q為圓心的圓過A、B兩點,并且和直線CD相切,如圖3,求點Q的坐標.

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、D【解析】【分析】根據(jù)二次函數(shù)的圖象可以判斷a、b、的正負情況,從而可以得到一次函數(shù)經(jīng)過哪幾個象限,觀察各選項即可得答案.【詳解】由二次函數(shù)的圖象可知,,,當時,,的圖象經(jīng)過二、三、四象限,觀察可得D選項的圖象符合,故選D.【點睛】本題考查二次函數(shù)的圖象與性質(zhì)、一次函數(shù)的圖象與性質(zhì),認真識圖,會用函數(shù)的思想、數(shù)形結(jié)合思想解答問題是關(guān)鍵.2、B【解析】

觀察圖形,利用中心對稱圖形的性質(zhì)解答即可.【詳解】選項A,新圖形不是中心對稱圖形,故此選項錯誤;選項B,新圖形是中心對稱圖形,故此選項正確;選項C,新圖形不是中心對稱圖形,故此選項錯誤;選項D,新圖形不是中心對稱圖形,故此選項錯誤;故選B.【點睛】本題考查了中心對稱圖形的概念,熟知中心對稱圖形的概念是解決問題的關(guān)鍵.3、C【解析】

試題分析:∵在矩形ABCD中,AE平分∠BAD,∴∠BAE=∠DAE=45°,∴△ABE是等腰直角三角形,∴AE=AB,∵AD=AB,∴AE=AD,又∠ABE=∠AHD=90°∴△ABE≌△AHD(AAS),∴BE=DH,∴AB=BE=AH=HD,∴∠ADE=∠AED=(180°﹣45°)=67.5°,∴∠CED=180°﹣45°﹣67.5°=67.5°,∴∠AED=∠CED,故①正確;∵∠AHB=(180°﹣45°)=67.5°,∠OHE=∠AHB(對頂角相等),∴∠OHE=∠AED,∴OE=OH,∵∠OHD=90°﹣67.5°=22.5°,∠ODH=67.5°﹣45°=22.5°,∴∠OHD=∠ODH,∴OH=OD,∴OE=OD=OH,故②正確;∵∠EBH=90°﹣67.5°=22.5°,∴∠EBH=∠OHD,又BE=DH,∠AEB=∠HDF=45°∴△BEH≌△HDF(ASA),∴BH=HF,HE=DF,故③正確;由上述①、②、③可得CD=BE、DF=EH=CE,CF=CD-DF,∴BC-CF=(CD+HE)-(CD-HE)=2HE,所以④正確;∵AB=AH,∠BAE=45°,∴△ABH不是等邊三角形,∴AB≠BH,∴即AB≠HF,故⑤錯誤;綜上所述,結(jié)論正確的是①②③④共4個.故選C.【點睛】考點:1、矩形的性質(zhì);2、全等三角形的判定與性質(zhì);3、角平分線的性質(zhì);4、等腰三角形的判定與性質(zhì)4、B【解析】分析:過點D作DE⊥AB于E,先求出CD的長,再根據(jù)角平分線上的點到角的兩邊的距離相等可得DE=CD=2,然后根據(jù)三角形的面積公式列式計算即可得解.詳解:如圖,過點D作DE⊥AB于E,∵AB=8,CD=2,∵AD是∠BAC的角平分線,∴DE=CD=2,∴△ABD的面積故選B.點睛:考查角平分線的性質(zhì),角平分線上的點到角兩邊的距離相等.5、D【解析】

首先判斷出四個結(jié)論的錯誤個數(shù)和正確個數(shù),進而可得m、n的值,再計算出即可.【詳解】解:有公共頂點且相等的兩個角是對頂角,錯誤;

,正確;

,錯誤;

若,則它們互余,錯誤;

則,,

故選D.【點睛】此題主要考查了二次根式的乘除、對頂角、科學記數(shù)法、余角和負整數(shù)指數(shù)冪,關(guān)鍵是正確確定m、n的值.6、B【解析】

根據(jù)俯視圖可確定主視圖的列數(shù)和每列小正方體的個數(shù).【詳解】由俯視圖可得,主視圖一共有兩列,左邊一列由兩個小正方體組成,右邊一列由3個小正方體組成.故答案選B.【點睛】由幾何體的俯視圖可確定該幾何體的主視圖和左視圖.7、D【解析】

根據(jù)任意兩個實數(shù)都可以比較大小.正實數(shù)都大于0,負實數(shù)都小于0,正實數(shù)大于一切負實數(shù),兩個負實數(shù)絕對值大的反而小即可判斷.【詳解】﹣π<﹣<0<1.則最小的數(shù)是﹣π.故選:D.【點睛】本題考查了實數(shù)大小的比較,理解任意兩個實數(shù)都可以比較大?。龑崝?shù)都大于0,負實數(shù)都小于0,正實數(shù)大于一切負實數(shù),兩個負實數(shù)絕對值大的反而小是關(guān)鍵.8、D【解析】

根據(jù)中位數(shù)和方差的定義分別計算出原數(shù)據(jù)和新數(shù)據(jù)的中位數(shù)和方差,從而做出判斷.【詳解】∵原數(shù)據(jù)的中位數(shù)是2+42=3,平均數(shù)為1+2+4+54=3,

∴方差為14×[(1-3)2+(2-3)2+(4-3)2+(5-3)2]=52;

∵新數(shù)據(jù)的中位數(shù)為3,平均數(shù)為1+2+3+【點睛】本題考查了中位數(shù)和方差,解題的關(guān)鍵是掌握中位數(shù)和方差的定義.9、D【解析】分析:根據(jù)條形統(tǒng)計圖得到各數(shù)據(jù)的權(quán),然后根據(jù)中位數(shù)的定義求解.詳解:一共30個數(shù)據(jù),第15個數(shù)和第16個數(shù)都是22,所以中位數(shù)是22.故選D.點睛:考查中位數(shù)的定義,看懂條形統(tǒng)計圖是解題的關(guān)鍵.10、C【解析】

根據(jù)題意可以求出這個正n邊形的中心角是60°,即可求出邊數(shù).【詳解】⊙O是一個正n邊形的外接圓,若⊙O的半徑與這個正n邊形的邊長相等,則這個正n邊形的中心角是60°,n的值為6,故選:C【點睛】考查正多邊形和圓,求出這個正多邊形的中心角度數(shù)是解題的關(guān)鍵.二、填空題(共7小題,每小題3分,滿分21分)11、200x【解析】

直接利用甲車比乙車早半小時到達目的地得出等式即可.【詳解】解:設乙車的速度是x千米/小時,則根據(jù)題意,可列方程:200x故答案為:200x【點睛】此題主要考查了由實際問題抽象出分式方程,正確表示出兩車所用時間是解題關(guān)鍵.12、140°【解析】

如圖,連接BD,∵點E、F分別是邊AB、AD的中點,∴EF是△ABD的中位線,∴EF∥BD,BD=2EF=12,∴∠ADB=∠AFE=50°,∵BC=15,CD=9,BD=12,∴BC2=225,CD2=81,BD2=144,∴CD2+BD2=BC2,∴∠BDC=90°,∴∠ADC=∠ADB+∠BDC=50°+90°=140°.故答案為:140°.13、(x+2)(x-2).【解析】試題分析:直接利用平方差公式分解因式得出x2﹣4=(x+2)(x﹣2).考點:因式分解-運用公式法14、.【解析】解:如圖,連接AN,由題意知,BM⊥AA',BA=BA',∴AN=A'N,∴∠ANB=∠A'NB=45°,∵∠AMB=22.5°,∴∠MAN=∠ANB﹣∠AMB=22.5°=∠AMN,∴AN=MN=200米,在Rt△ABN中,∠ANB=45°,∴AB=AN=(米),故答案為.點睛:此題是解直角三角形的應用﹣﹣﹣仰角和俯角,主要考查了垂直平分線的性質(zhì),等腰三角形的性質(zhì),解本題的關(guān)鍵是求出∠ANB=45°.15、1.【解析】

易得:△ABM∽△OCM,利用相似三角形的相似比可得出小明的影長.【詳解】解:根據(jù)題意,易得△MBA∽△MCO,

根據(jù)相似三角形的性質(zhì)可知,即,

解得AM=1m.則小明的影長為1米.

故答案是:1.【點睛】本題只要是把實際問題抽象到相似三角形中,利用相似三角形的相似比可得出小明的影長.16、向南走10km【解析】

分析:與北相反的方向是南,由題意,負數(shù)表示向北走,則正數(shù)就表示向南走,據(jù)此得出結(jié)論.詳解:∵向北走5km記作﹣5km,∴+10km表示向南走10km.故答案是:向南走10km.點睛:本題考查對相反意義量的認識:在一對具有相反意義的量中,先規(guī)定一個為正數(shù),則另一個就要用負數(shù)表示.17、C【解析】

分出情況當P點在BC上運動,與P點在CD上運動,得到關(guān)系,選出圖象即可【詳解】由題意可知,P從B開始出發(fā),沿B—C—D向終點D勻速運動,則當0<x≤2,s=x當2<x≤3,s=1所以剛開始的時候為正比例函數(shù)s=x圖像,后面為水平直線,故選C【點睛】本題主要考查實際問題與函數(shù)圖像,關(guān)鍵在于讀懂題意,弄清楚P的運動狀態(tài)三、解答題(共7小題,滿分69分)18、見解析.【解析】試題分析:先做出∠AOB的角平分線,再求出線段MN的垂直平分線就得到點P.試題解析:考點:尺規(guī)作圖角平分線和線段的垂直平分線、圓的性質(zhì).19、(1)①△D′BC是等邊三角形,②∠ADB=30°(1)∠ADB=30°;(3)7+或7﹣【解析】

(1)①如圖1中,作∠ABD′=∠ABD,BD′=BD,連接CD′,AD′,由△ABD≌△ABD′,推出△D′BC是等邊三角形;②借助①的結(jié)論,再判斷出△AD′B≌△AD′C,得∠AD′B=∠AD′C,由此即可解決問題.(1)當60°<α≤110°時,如圖3中,作∠AB

D′=∠ABD,B

D′=BD,連接CD′,AD′,證明方法類似(1).(3)第①種情況:當60°<α≤110°時,如圖3中,作∠AB

D′=∠ABD,B

D′=BD,連接CD′,AD′,證明方法類似(1),最后利用含30度角的直角三角形求出DE,即可得出結(jié)論;第②種情況:當0°<α<60°時,如圖4中,作∠ABD′=∠ABD,BD′=BD,連接CD′,AD′.證明方法類似(1),最后利用含30度角的直角三角形的性質(zhì)即可得出結(jié)論.【詳解】(1)①如圖1中,作∠ABD′=∠ABD,BD′=BD,連接CD′,AD′,∵AB=AC,∠BAC=90°,∴∠ABC=45°,∵∠DBC=30°,∴∠ABD=∠ABC﹣∠DBC=15°,在△ABD和△ABD′中,∴△ABD≌△ABD′,∴∠ABD=∠ABD′=15°,∠ADB=∠AD′B,∴∠D′BC=∠ABD′+∠ABC=60°,∵BD=BD′,BD=BC,∴BD′=BC,∴△D′BC是等邊三角形,②∵△D′BC是等邊三角形,∴D′B=D′C,∠BD′C=60°,在△AD′B和△AD′C中,∴△AD′B≌△AD′C,∴∠AD′B=∠AD′C,∴∠AD′B=∠BD′C=30°,∴∠ADB=30°.(1)∵∠DBC<∠ABC,∴60°<α≤110°,如圖3中,作∠ABD′=∠ABD,BD′=BD,連接CD′,AD′,∵AB=AC,∴∠ABC=∠ACB,∵∠BAC=α,∴∠ABC=(180°﹣α)=90°﹣α,∴∠ABD=∠ABC﹣∠DBC=90°﹣α﹣β,同(1)①可證△ABD≌△ABD′,∴∠ABD=∠ABD′=90°﹣α﹣β,BD=BD′,∠ADB=∠AD′B∴∠D′BC=∠ABD′+∠ABC=90°﹣α﹣β+90°﹣α=180°﹣(α+β),∵α+β=110°,∴∠D′BC=60°,由(1)②可知,△AD′B≌△AD′C,∴∠AD′B=∠AD′C,∴∠AD′B=∠BD′C=30°,∴∠ADB=30°.(3)第①情況:當60°<α<110°時,如圖3﹣1,由(1)知,∠ADB=30°,作AE⊥BD,在Rt△ADE中,∠ADB=30°,AD=1,∴DE=,∵△BCD'是等邊三角形,∴BD'=BC=7,∴BD=BD'=7,∴BE=BD﹣DE=7﹣;第②情況:當0°<α<60°時,如圖4中,作∠ABD′=∠ABD,BD′=BD,連接CD′,AD′.同理可得:∠ABC=(180°﹣α)=90°﹣α,∴∠ABD=∠DBC﹣∠ABC=β﹣(90°﹣α),同(1)①可證△ABD≌△ABD′,∴∠ABD=∠ABD′=β﹣(90°﹣α),BD=BD′,∠ADB=∠AD′B,∴∠D′BC=∠ABC﹣∠ABD′=90°﹣α﹣[β﹣(90°﹣α)]=180°﹣(α+β),∴D′B=D′C,∠BD′C=60°.同(1)②可證△AD′B≌△AD′C,∴∠AD′B=∠AD′C,∵∠AD′B+∠AD′C+∠BD′C=360°,∴∠ADB=∠AD′B=150°,在Rt△ADE中,∠ADE=30°,AD=1,∴DE=,∴BE=BD+DE=7+,故答案為:7+或7﹣.【點睛】此題是三角形綜合題,主要考查全等三角形的判定和性質(zhì).等邊三角形的性質(zhì)、等腰三角形的性質(zhì)等知識,解題的關(guān)鍵是學會添加常用輔助線,構(gòu)造全等三角形解決問題,屬于中考??碱}型.20、(1)AD=DE;(2)AD=DE,證明見解析;(3).【解析】試題分析:本題難度中等.主要考查學生對探究例子中的信息進行歸納總結(jié).并能夠結(jié)合三角形的性質(zhì)是解題關(guān)鍵.試題解析:(10分)(1)AD=DE.(2)AD=DE.證明:如圖2,過點D作DF//AC,交AC于點F,∵△ABC是等邊三角形,∴AB=BC,∠B=∠ACB=∠ABC=60°.又∵DF//AC,∴∠BDF=∠BFD=60°∴△BDF是等邊三角形,BF=BD,∠BFD=60°,∴AF=CD,∠AFD=120°.∵EC是外角的平分線,∠DCE=120°=∠AFD.∵∠ADC是△ABD的外角,∴∠ADC=∠B+∠FAD=60°+∠FAD.∵∠ADC=∠ADE+∠EDC=60°+∠EDC,∴∠FAD=∠EDC.∴△AFD≌△DCE(ASA),∴AD=DE;(3).考點:1.等邊三角形探究題;2.全等三角形的判定與性質(zhì);3.等邊三角形的判定與性質(zhì).21、(1);(2).【解析】

(1)原式=1﹣×=1﹣=;(2)原式=×+×=.【點睛】本題考查特殊角的三角函數(shù)值,熟練掌握每個特殊角的三角函數(shù)值是解此題的關(guān)鍵.22、(2)見解析;(2)2+.【解析】

(2)連接OC,根據(jù)圓周角定理、切線的性質(zhì)得到∠ACO=∠DCB,根據(jù)CA=CD得到∠CAD=∠D,證明∠COB=∠CBO,根據(jù)等角對等邊證明;

(2)連接AE,過點B作BF⊥CE于點F,根據(jù)勾股定理計算即可.【詳解】(2)證明:連接OC,∵AB為⊙O直徑,∴∠ACB=90°,∵CD為⊙O切線∴∠OCD=90°,∴∠ACO=∠DCB=90°﹣∠OCB,∵CA=CD,∴∠CAD=∠D.∴∠COB=∠CBO.∴OC=BC.∴OB=BC;(2)連接AE,過點B作BF⊥CE于點F,∵E是AB中點,∴,∴AE=BE=2.∵AB為⊙O直徑,∴∠AEB=90°.∴∠ECB=∠BAE=45°,,∴.∴CF=BF=2.∴.∴.【點睛】本題考查的是切線的性質(zhì)、圓周角定理、勾股定理,掌握圓的切線垂直于經(jīng)過切點的半徑是解題的關(guān)鍵.23、6.58米【解析】試題分析:過A點作AE⊥CD于E.在Rt△ABE中,根據(jù)三角函數(shù)可得AE,BE,在Rt△ADE中,根據(jù)三角函數(shù)可得DE,再根據(jù)DB=DE﹣BE即可求解.試題解析:過A點作AE⊥CD于E.在Rt△ABE中,∠ABE=62°.∴AE=AB?sin62°=25×0.88=22米,BE=AB?cos62°=25×0.47=11.75米,在Rt△ADE中,∠ADB=50°,∴DE==18米,∴DB=DE﹣BE≈6.58米.故此時應將壩底向外拓寬大約6.58米.考點:解直角三角形的應用-坡度坡角問題.24、(1)(1,﹣4a);(2)①y=﹣x2+2x+3;②M(,)、N(,);③點Q的坐標為(1,﹣4+2)或(1,﹣4﹣2).【解析】分析:(1)將二次函數(shù)的解析式進行配方即可得到頂點D的坐標.(2)①以AD為直徑的圓經(jīng)過點C,即點C在以AD為直徑的圓的圓周上,依據(jù)圓周角定理不難得出△ACD是個直角三角形,且∠ACD=90°,A點坐標

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論