下載本文檔
版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
學校________________班級____________姓名____________考場____________準考證號學校________________班級____________姓名____________考場____________準考證號…………密…………封…………線…………內(nèi)…………不…………要…………答…………題…………第1頁,共3頁湖南工商大學《平面廣告設計》
2021-2022學年第一學期期末試卷題號一二三四總分得分一、單選題(本大題共15個小題,每小題2分,共30分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、在計算機視覺的圖像去噪任務中,假設要去除一張受到嚴重噪聲污染的圖像中的噪聲。以下關于圖像去噪方法的描述,正確的是:()A.中值濾波能夠有效地去除椒鹽噪聲,但會使圖像變得模糊B.均值濾波在去除噪聲的同時能夠很好地保留圖像的細節(jié)信息C.小波變換去噪方法計算復雜度高,不適合處理大規(guī)模圖像D.所有的圖像去噪方法都能夠完全恢復出原始的無噪圖像2、在計算機視覺中,特征提取是非常關鍵的一步。假設我們要對一組風景圖像進行特征提取,以便后續(xù)的圖像檢索和分類任務。以下哪種特征提取方法能夠捕捉到圖像的全局和局部特征,并且對圖像的旋轉(zhuǎn)、縮放等變換具有較好的不變性?()A.尺度不變特征變換(SIFT)B.方向梯度直方圖(HOG)C.局部二值模式(LBP)D.卷積神經(jīng)網(wǎng)絡自動學習的特征3、在計算機視覺的車牌識別任務中,假設要從不同角度和光照條件下拍攝的車輛圖像中準確識別出車牌號碼。以下哪種技術可能有助于提高識別準確率?()A.字符分割和單獨識別B.利用深度學習模型進行端到端的識別C.只關注車牌的顏色特征D.隨機猜測車牌號碼4、假設要開發(fā)一個能夠?qū)χ讣y進行識別和認證的計算機視覺系統(tǒng),以下哪種特征提取和匹配方法可能在指紋識別中具有較高的準確性?()A.細節(jié)點提取B.方向場提取C.紋理特征提取D.以上都是5、視頻分析是計算機視覺的一個重要領域。假設我們要分析一段監(jiān)控視頻,以檢測異常行為,如打架、盜竊等。對于這種實時性要求較高的視頻分析任務,以下哪種方法更適合用于快速處理和檢測?()A.對每一幀圖像單獨進行分析B.基于光流的方法跟蹤對象運動C.利用深度學習模型直接對視頻進行分析D.采用傳統(tǒng)的圖像處理方法,如背景減除6、在計算機視覺的三維重建中,從多幅二維圖像恢復物體的三維結(jié)構(gòu)。假設要對一個古建筑進行三維重建,以下關于三維重建方法的描述,哪一項是不正確的?()A.基于立體視覺的方法通過匹配不同視角下的圖像特征點來計算深度信息,實現(xiàn)三維重建B.運動恢復結(jié)構(gòu)(SfM)算法可以從一系列無序的圖像中重建場景的三維結(jié)構(gòu)C.激光掃描技術能夠直接獲取物體表面的三維點云數(shù)據(jù),是一種高精度的三維重建方法D.三維重建的結(jié)果只取決于輸入的圖像質(zhì)量,與重建算法的選擇無關7、計算機視覺中的表情識別旨在判斷圖像或視頻中人物的表情。假設要開發(fā)一個用于在線教育的表情識別系統(tǒng),以下關于表情特征的提取,哪一項是需要重點關注的?()A.提取面部肌肉的細微運動作為特征B.僅考慮眼睛和嘴巴的形狀變化C.忽略面部的整體輪廓,只關注局部特征D.不進行任何特征提取,直接使用原始圖像進行分類8、計算機視覺中的特征提取是非常關鍵的步驟。假設要從一組圖像中提取具有代表性的特征,以下關于特征提取方法的描述,正確的是:()A.手工設計的特征,如SIFT和HOG,在任何情況下都比深度學習自動學習的特征更有效B.深度學習中的卷積神經(jīng)網(wǎng)絡能夠自動學習到圖像的多層次特征,具有很強的表達能力C.特征提取的結(jié)果對后續(xù)的圖像分類和目標檢測任務沒有影響D.特征提取只需要考慮圖像的局部信息,全局信息不重要9、計算機視覺在文物保護和修復中具有潛在應用。假設要對一件受損的古代書畫進行數(shù)字化修復,以下關于計算機視覺在文物保護中的作用的描述,哪一項是不正確的?()A.可以通過圖像增強和去噪技術改善書畫的視覺效果B.利用圖像匹配和拼接技術還原殘缺的部分C.計算機視覺技術能夠完全恢復文物的原始狀態(tài),使其與未受損時一模一樣D.為文物修復專家提供輔助決策和參考依據(jù)10、計算機視覺中的圖像去噪旨在去除圖像中的噪聲,同時保留圖像的細節(jié)和結(jié)構(gòu)。假設我們有一張受到嚴重噪聲污染的醫(yī)學圖像,以下哪種圖像去噪方法能夠在去除噪聲的同時,最大程度地保留圖像的邊緣和紋理信息?()A.均值濾波B.中值濾波C.高斯濾波D.基于小波變換的去噪方法11、在計算機視覺中,圖像生成是創(chuàng)建新的圖像內(nèi)容。以下關于圖像生成的說法,錯誤的是()A.可以通過生成對抗網(wǎng)絡(GAN)、變分自編碼器(VAE)等模型進行圖像生成B.圖像生成可以用于藝術創(chuàng)作、數(shù)據(jù)增強和虛擬場景構(gòu)建等任務C.生成的圖像質(zhì)量和真實性在不斷提高,但仍然存在一些缺陷和不完美之處D.圖像生成可以完全根據(jù)用戶的任意想象生成任何內(nèi)容,不受任何限制12、在計算機視覺的應用于自動駕駛領域,需要實時檢測道路上的交通標志和標線。假設車輛在高速行駛中,以下哪種技術能夠快速準確地檢測到各種交通標志,并且對光照變化和遮擋具有較強的魯棒性?()A.基于顏色和形狀特征的檢測方法B.基于深度學習的檢測方法,結(jié)合多尺度特征C.基于邊緣檢測和形態(tài)學操作的方法D.基于模板匹配和特征點匹配的方法13、當進行視頻中的動作識別時,假設要分析一段運動員訓練的視頻,識別出其中的各種動作,如跑步、跳躍和舉重等。視頻中的動作可能存在速度變化、遮擋和視角變化等問題。為了準確識別這些動作,以下哪種技術是關鍵的?()A.對每一幀圖像進行獨立的動作分類,然后綜合結(jié)果B.利用光流信息來捕捉視頻中的運動模式C.只關注視頻中的關鍵幀,忽略其他幀D.不考慮視頻的時序信息,將其視為一系列獨立的圖像14、在計算機視覺中,視頻摘要生成是從長視頻中提取關鍵內(nèi)容并生成簡潔的摘要。以下關于視頻摘要生成的敘述,不正確的是()A.視頻摘要生成可以基于關鍵幀提取、內(nèi)容分析和故事線構(gòu)建等方法B.深度學習方法能夠?qū)W習視頻的語義信息,生成更有代表性的摘要C.視頻摘要生成在視頻瀏覽、檢索和存儲等方面具有實用價值D.視頻摘要生成能夠完全準確地反映視頻的所有重要內(nèi)容,沒有任何信息丟失15、計算機視覺中的眼底圖像分析對于眼科疾病的診斷具有重要意義。以下關于眼底圖像分析的描述,不準確的是()A.可以檢測眼底的病變、血管異常和視網(wǎng)膜結(jié)構(gòu)的改變B.深度學習方法在眼底圖像分析中能夠自動提取特征和進行疾病分類C.眼底圖像分析需要高質(zhì)量的圖像數(shù)據(jù)和專業(yè)的醫(yī)學知識標注D.眼底圖像分析技術已經(jīng)非常成熟,能夠替代醫(yī)生的診斷二、簡答題(本大題共3個小題,共15分)1、(本題5分)簡述圖像的小波變換的特點。2、(本題5分)說明計算機視覺在海洋化學分析中的應用。3、(本題5分)說明計算機視覺在物流配送優(yōu)化中的作用。三、應用題(本大題共5個小題,共25分)1、(本題5分)運用圖像分割技術,將人物從背景中分離出來。2、(本題5分)基于深度學習,實現(xiàn)對舉重比賽中運動員動作的標準性檢測。3、(本題5分)運用圖像識別算法,對不同樂器的圖像進行分類和識別。4、(本題5分)設計一個系統(tǒng),利用計算機視覺檢測超市顧客是否有未結(jié)賬商品。5、(本題5分)利用圖像分割技術,從核磁共振圖像中分割出腫瘤區(qū)域。四、分析題(本大題共3個小題,共30分)1、(本
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 海水棧道施工方案(3篇)
- 玉米干加工飼料管理制度(3篇)
- 罕見驅(qū)動基因耐藥應對策略
- 教育教學成果轉(zhuǎn)化制度
- 國際關系學院本科試卷抽查評估表(本科教學督導組專用)
- 罕見血液病患者感染防控策略
- 2026屆河北省承德二中高二生物第一學期期末考試模擬試題含解析
- 罕見腫瘤的個體化治療腫瘤負荷監(jiān)測技術療效預測
- 罕見腫瘤的個體化治療藥物相互作用管理
- 2026屆山東省名校聯(lián)盟新教材數(shù)學高一上期末聯(lián)考模擬試題含解析
- 建筑防水工程技術規(guī)程DBJ-T 15-19-2020
- 矢量網(wǎng)絡分析儀校準規(guī)范
- 高考英語閱讀理解分類及方法課件
- 紹興金牡印染有限公司年產(chǎn)12500噸針織布、6800萬米梭織布高檔印染面料升級技改項目環(huán)境影響報告
- DHA乳狀液制備工藝優(yōu)化及氧化穩(wěn)定性的研究
- 2023年江蘇省五年制專轉(zhuǎn)本英語統(tǒng)考真題(試卷+答案)
- 岳麓書社版高中歷史必修三3.13《挑戰(zhàn)教皇的權威》課件(共28張PPT)
- GC/T 1201-2022國家物資儲備通用術語
- 污水管網(wǎng)監(jiān)理規(guī)劃
- GB/T 6730.65-2009鐵礦石全鐵含量的測定三氯化鈦還原重鉻酸鉀滴定法(常規(guī)方法)
- GB/T 35273-2020信息安全技術個人信息安全規(guī)范
評論
0/150
提交評論