版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
第三篇思想方法篇思想03數(shù)形結(jié)合思想(講)考向速覽方法技巧典例分析一.運(yùn)用數(shù)形結(jié)合思想分析解決問題時(shí),要遵循三個(gè)原則:(1)等價(jià)性原則.在數(shù)形結(jié)合時(shí),代數(shù)性質(zhì)和幾何性質(zhì)的轉(zhuǎn)換必須是等價(jià)的,否則解題將會(huì)出現(xiàn)漏洞.有時(shí),由于圖形的局限性,不能完整的表現(xiàn)數(shù)的一般性,這時(shí)圖形的性質(zhì)只能是一種直觀而淺顯的說明,要注意其帶來的負(fù)面效應(yīng).(2)雙方性原則.既要進(jìn)行幾何直觀分析,又要進(jìn)行相應(yīng)的代數(shù)抽象探求,僅對(duì)代數(shù)問題進(jìn)行幾何分析容易出錯(cuò).(3)簡單性原則.不要為了“數(shù)形結(jié)合”而數(shù)形結(jié)合.具體運(yùn)用時(shí),一要考慮是否可行和是否有利;二要選擇好突破口,恰當(dāng)設(shè)參、用參、建立關(guān)系、做好轉(zhuǎn)化;三要挖掘隱含條件,準(zhǔn)確界定參變量的取值范圍,特別是運(yùn)用函數(shù)圖象時(shí)應(yīng)設(shè)法選擇動(dòng)直線與定二次曲線.二.特別提醒數(shù)形結(jié)合思想是解答高考數(shù)學(xué)試題的一種常用方法與技巧,特別是在解選擇題、填空題時(shí)發(fā)揮著奇特功效,這就要求我們?cè)谄綍r(shí)學(xué)習(xí)中加強(qiáng)這方面的訓(xùn)練,以提高解題能力和速度.具體操作時(shí),應(yīng)注意以下幾點(diǎn):(1)準(zhǔn)確畫出函數(shù)圖象,注意函數(shù)的定義域;(2)用圖象法討論方程(特別是含參數(shù)的方程)的解的個(gè)數(shù)是一種行之有效的方法,值得注意的是首先要把方程兩邊的代數(shù)式看作是兩個(gè)函數(shù)的表達(dá)式(有時(shí)可能先作適當(dāng)調(diào)整,以便于作圖),然后作出兩個(gè)函數(shù)的圖象,由圖求解;利用數(shù)形結(jié)合探究方程解的問題應(yīng)注意兩點(diǎn)(3)在解答題中數(shù)形結(jié)合思想是探究解題的思路時(shí)使用的,不可使用形的直觀代替相關(guān)的計(jì)算和推理論證.三.命題規(guī)律1.?dāng)?shù)形結(jié)合思想在高考試題中主要有以下幾個(gè)常考點(diǎn)(1)集合的運(yùn)算及Venn圖;(2)函數(shù)及其圖象;(3)平面向量(4)數(shù)列通項(xiàng)及求和公式的函數(shù)特征及函數(shù)圖象;(5)方程(多指二元方程)及方程的曲線;(6)對(duì)于研究距離、角或面積的問題,往往涉及直線與圓、立體幾何、圓錐曲線等,利用幾何圖形或形數(shù)轉(zhuǎn)換求解;(7)對(duì)于研究函數(shù)、方程或不等式(最值)的問題,可通過函數(shù)的圖象求解(函數(shù)的零點(diǎn)、頂點(diǎn)是關(guān)鍵點(diǎn)),做好知識(shí)的遷移與綜合運(yùn)用【與函數(shù)方程思想相結(jié)合】.2.?dāng)?shù)形結(jié)合思想常用模型:一次、二次函數(shù)圖象;“對(duì)勾函數(shù)”應(yīng)用單調(diào)性或基本不等式;三角函數(shù)圖象和性質(zhì);斜率公式;兩點(diǎn)間的距離公式(或向量的模、復(fù)數(shù)的模);點(diǎn)到直線的距離公式等.01研究圖形的形狀、位置關(guān)系、性質(zhì)等【核心提示】1.函數(shù)圖象與性質(zhì)應(yīng)用問題:即通過函數(shù)圖象來分析和解決函數(shù)問題的方法,對(duì)于高中數(shù)學(xué)函數(shù)貫穿始終,因此這種方法是最常用的,破解此類題的關(guān)鍵點(diǎn):①分析數(shù)理特征,一般解決問題時(shí)不能精確畫出圖象,只能通過圖象的大概性質(zhì)分析問題,因此需要確定能否用函數(shù)圖象解決問題;②畫出函數(shù)圖象,畫出對(duì)應(yīng)的函數(shù)、轉(zhuǎn)化的函數(shù)或構(gòu)造函數(shù)的圖象;③數(shù)形轉(zhuǎn)化,這個(gè)轉(zhuǎn)化實(shí)際是借助函數(shù)圖象將難以解決的數(shù)理關(guān)系明顯化;④得出結(jié)論,通過觀察函數(shù)圖象得出相應(yīng)的結(jié)論.2.熟練掌握函數(shù)圖像的變換:由函數(shù)圖象的變換能較快畫出函數(shù)圖象,應(yīng)該掌握平移(上下左右平移)、翻折(關(guān)于特殊直線翻折)、對(duì)稱(中心對(duì)稱和軸對(duì)稱)等基本轉(zhuǎn)化法與函數(shù)解析式的關(guān)系.【典例分析】典例1.(河南省普高聯(lián)考2022-2023學(xué)年高三下學(xué)期測評(píng)(四))函數(shù)SKIPIF1<0的大致圖象是(
)A. B.C. D.【答案】A【分析】先判斷函數(shù)的奇偶性即可排除選項(xiàng)SKIPIF1<0;再利用特殊值即可排除選項(xiàng)SKIPIF1<0,進(jìn)而求解.【詳解】函數(shù)SKIPIF1<0的定義域?yàn)镾KIPIF1<0,且SKIPIF1<0,所以SKIPIF1<0是奇函數(shù),圖象關(guān)于原點(diǎn)對(duì)稱,排除SKIPIF1<0選項(xiàng),只需研究SKIPIF1<0的圖象,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,則SKIPIF1<0,排除SKIPIF1<0選項(xiàng).故選:SKIPIF1<0.點(diǎn)睛:函數(shù)圖象的識(shí)辨可從以下方面入手:(1)從函數(shù)的定義域,判斷圖象的左右位置;從函數(shù)的值域,判斷圖象的上下位置.(2)從函數(shù)的單調(diào)性,判斷圖象的變化趨勢.(3)從函數(shù)的奇偶性,判斷圖象的對(duì)稱性.(4)利用函數(shù)值考察特征點(diǎn),排除不合要求的圖象.(5)應(yīng)用導(dǎo)數(shù)研究函數(shù)的性質(zhì),考察圖象升降的快慢、極值點(diǎn),發(fā)現(xiàn)圖象差別.利用上述方法排除、篩選選項(xiàng).典例2.(2022·北京·統(tǒng)考模擬預(yù)測)已知函數(shù)SKIPIF1<0的圖象如圖1所示,則圖2對(duì)應(yīng)的函數(shù)有可能是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【分析】利用分類討論思想,根據(jù)函數(shù)值的符號(hào),及變化,分別對(duì)四個(gè)選項(xiàng)判斷即可求解.【詳解】對(duì)于SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,所以SKIPIF1<0,故選項(xiàng)SKIPIF1<0錯(cuò)誤;對(duì)于SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,所以SKIPIF1<0,故選項(xiàng)SKIPIF1<0錯(cuò)誤;對(duì)于SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,所以SKIPIF1<0,且SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,所以SKIPIF1<0,且SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0,故選項(xiàng)SKIPIF1<0正確;對(duì)于SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0,故選項(xiàng)SKIPIF1<0錯(cuò)誤,故選:SKIPIF1<0.典例3.(2023·河南·校聯(lián)考模擬預(yù)測)已知O為坐標(biāo)原點(diǎn),F(xiàn)是橢圓SKIPIF1<0的左焦點(diǎn).若橢圓C上存在兩點(diǎn)A,B滿足SKIPIF1<0,且A,B,O三點(diǎn)共線,則橢圓C的離心率的取值范圍為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【分析】設(shè)橢圓C的右焦點(diǎn)為SKIPIF1<0,連接SKIPIF1<0.由橢圓的性質(zhì)分析出以SKIPIF1<0為直徑的圓與橢圓有公共點(diǎn),得到SKIPIF1<0,消去SKIPIF1<0,即可求出離心率的取值范圍.【詳解】設(shè)橢圓C的右焦點(diǎn)為SKIPIF1<0,連接SKIPIF1<0.由橢圓的性質(zhì)得,SKIPIF1<0,SKIPIF1<0,即橢圓上存在點(diǎn)A,滿足SKIPIF1<0,即以SKIPIF1<0為直徑的圓與橢圓有公共點(diǎn).設(shè)橢圓C的半焦距為SKIPIF1<0,所以只需SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,所以橢圓C的離心率的取值范圍為SKIPIF1<0.故選:C02構(gòu)建函數(shù)模型并結(jié)合其圖象求參數(shù)的取值范圍【核心提示】含有參數(shù)的分類討論問題主要包括:(1)含有參數(shù)的不等式的求解;(2)含有參數(shù)的方程的求解;(3)函數(shù)解析式中含參數(shù)的最值與單調(diào)性問題;(4)二元二次方程表示曲線類型的判定等.求解這類問題的一般思路是:結(jié)合參數(shù)的意義及參數(shù)對(duì)結(jié)果的影響進(jìn)行分類討論.討論時(shí),應(yīng)全面分析參數(shù)變化引起結(jié)論的變化情況,參數(shù)有幾何意義時(shí)還要考慮適當(dāng)?shù)剡\(yùn)用數(shù)形結(jié)合思想.【典例分析】典例4.(全國·高考真題(文))已知函數(shù)SKIPIF1<0,若SKIPIF1<0,則a的取值范圍是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【解析】作出函數(shù)SKIPIF1<0的圖像,和函數(shù)SKIPIF1<0的圖像,結(jié)合圖像可知直線SKIPIF1<0介于SKIPIF1<0與SKIPIF1<0軸之間,利用導(dǎo)數(shù)求出直線SKIPIF1<0的斜率,數(shù)形結(jié)合即可求解.【詳解】由題意可作出函數(shù)SKIPIF1<0的圖像,和函數(shù)SKIPIF1<0的圖像.由圖像可知:函數(shù)SKIPIF1<0的圖像是過原點(diǎn)的直線,當(dāng)直線介于SKIPIF1<0與SKIPIF1<0軸之間符合題意,直線SKIPIF1<0為曲線的切線,且此時(shí)函數(shù)SKIPIF1<0在第二象限的部分的解析式為SKIPIF1<0,求其導(dǎo)數(shù)可得SKIPIF1<0,因?yàn)镾KIPIF1<0,故SKIPIF1<0,故直線SKIPIF1<0的斜率為SKIPIF1<0,故只需直線SKIPIF1<0的斜率SKIPIF1<0SKIPIF1<0.故選:D【點(diǎn)睛】本題考查了不等式恒成立求出參數(shù)取值范圍,考查了數(shù)形結(jié)合的思想,屬于中檔題.典例5.(2020·天津高考真題)已知函數(shù)SKIPIF1<0若函數(shù)SKIPIF1<0恰有4個(gè)零點(diǎn),則SKIPIF1<0的取值范圍是()A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】D【解析】注意到SKIPIF1<0,所以要使SKIPIF1<0恰有4個(gè)零點(diǎn),只需方程SKIPIF1<0恰有3個(gè)實(shí)根即可,令SKIPIF1<0SKIPIF1<0,即SKIPIF1<0與SKIPIF1<0的圖象有SKIPIF1<0個(gè)不同交點(diǎn).因?yàn)镾KIPIF1<0,當(dāng)SKIPIF1<0時(shí),此時(shí)SKIPIF1<0,如圖1,SKIPIF1<0與SKIPIF1<0有SKIPIF1<0個(gè)不同交點(diǎn),不滿足題意;當(dāng)SKIPIF1<0時(shí),如圖2,此時(shí)SKIPIF1<0與SKIPIF1<0恒有SKIPIF1<0個(gè)不同交點(diǎn),滿足題意;當(dāng)SKIPIF1<0時(shí),如圖3,當(dāng)SKIPIF1<0與SKIPIF1<0相切時(shí),聯(lián)立方程得SKIPIF1<0,令SKIPIF1<0得SKIPIF1<0,解得SKIPIF1<0(負(fù)值舍去),所以SKIPIF1<0.綜上,SKIPIF1<0的取值范圍為SKIPIF1<0.故選:D.典例6.(2015·全國·高考真題(理))設(shè)函數(shù)SKIPIF1<0,其中SKIPIF1<0,若存在唯一的整數(shù)SKIPIF1<0,使得SKIPIF1<0,則SKIPIF1<0的取值范圍是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【分析】設(shè)SKIPIF1<0,SKIPIF1<0,問題轉(zhuǎn)化為存在唯一的整數(shù)SKIPIF1<0使得滿足SKIPIF1<0,求導(dǎo)可得出函數(shù)SKIPIF1<0的極值,數(shù)形結(jié)合可得SKIPIF1<0且SKIPIF1<0,由此可得出實(shí)數(shù)SKIPIF1<0的取值范圍.【詳解】設(shè)SKIPIF1<0,SKIPIF1<0,由題意知,函數(shù)SKIPIF1<0在直線SKIPIF1<0下方的圖象中只有一個(gè)點(diǎn)的橫坐標(biāo)為整數(shù),SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0.所以,函數(shù)SKIPIF1<0的最小值為SKIPIF1<0.又SKIPIF1<0,SKIPIF1<0.直線SKIPIF1<0恒過定點(diǎn)SKIPIF1<0且斜率為SKIPIF1<0,故SKIPIF1<0且SKIPIF1<0,解得SKIPIF1<0,故選D.【點(diǎn)睛】本題考查導(dǎo)數(shù)與極值,涉及數(shù)形結(jié)合思想轉(zhuǎn)化,屬于中等題.03構(gòu)建函數(shù)模型并結(jié)合其圖象研究量與量之間的大小關(guān)系【核心提示】熟練掌握常見函數(shù)的圖象以及函數(shù)圖象的變換:由函數(shù)圖象的變換能較快畫出函數(shù)圖象,應(yīng)該掌握平移(上下左右平移)、翻折(關(guān)于特殊直線翻折)、對(duì)稱(中心對(duì)稱和軸對(duì)稱)等基本轉(zhuǎn)化法與函數(shù)解析式的關(guān)系.【典例分析】典例7.【多選題】(2022秋·福建泉州·高三??茧A段練習(xí))已知函數(shù)SKIPIF1<0的零點(diǎn)為SKIPIF1<0,函數(shù)SKIPIF1<0的零點(diǎn)為SKIPIF1<0,則下列不等式中成立的是(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】BC【分析】把問題轉(zhuǎn)化為兩個(gè)函數(shù)圖象交點(diǎn)問題,根據(jù)反函數(shù)的性質(zhì)、基本不等式進(jìn)行逐一判斷即可.【詳解】令SKIPIF1<0、SKIPIF1<0,則SKIPIF1<0、SKIPIF1<0,在同一坐標(biāo)系中分別繪出函數(shù)SKIPIF1<0、SKIPIF1<0、SKIPIF1<0的圖像,因?yàn)楹瘮?shù)SKIPIF1<0的零點(diǎn)為SKIPIF1<0,函數(shù)SKIPIF1<0的零點(diǎn)為SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,解方程組SKIPIF1<0,因?yàn)楹瘮?shù)SKIPIF1<0與SKIPIF1<0互為反函數(shù),所以由反函數(shù)性質(zhì)知SKIPIF1<0、SKIPIF1<0關(guān)于SKIPIF1<0對(duì)稱,則SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,當(dāng)且僅當(dāng)a=b=1時(shí),等號(hào)成立,所以A、D錯(cuò)誤,B、C正確.故選:BC【點(diǎn)睛】關(guān)鍵點(diǎn)睛:對(duì)于零點(diǎn)關(guān)系問題,往往把函數(shù)零點(diǎn)轉(zhuǎn)化方程的根,再轉(zhuǎn)化為新函數(shù)的交點(diǎn)橫坐標(biāo)關(guān)系問題,另外本題要注意函數(shù)SKIPIF1<0與函數(shù)SKIPIF1<0是反函數(shù),故兩個(gè)交點(diǎn)A、B關(guān)于點(diǎn)SKIPIF1<0中心對(duì)稱.典例8.(2023·貴州貴陽·統(tǒng)考模擬預(yù)測)已知正實(shí)數(shù)SKIPIF1<0,若SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0的大小關(guān)系為(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】D【分析】根據(jù)已知關(guān)系式的特征可構(gòu)造函數(shù)SKIPIF1<0,利用導(dǎo)數(shù)可求得SKIPIF1<0單調(diào)性,并確定SKIPIF1<0的圖象,根據(jù)SKIPIF1<0,結(jié)合圖象可確定SKIPIF1<0的大小關(guān)系.【詳解】令SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0當(dāng)SKIPIF1<0時(shí),SKIPIF1<0;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0;SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,在SKIPIF1<0上單調(diào)遞減,SKIPIF1<0,又SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0恒成立,可得SKIPIF1<0圖象如下圖所示,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0;SKIPIF1<0,SKIPIF1<0,SKIPIF1<0;綜上所述:SKIPIF1<0.故選:D.【點(diǎn)睛】關(guān)鍵點(diǎn)點(diǎn)睛;本題考查構(gòu)造函數(shù)比較函數(shù)值大小的問題,解題關(guān)鍵是能夠根據(jù)已知關(guān)系式的結(jié)構(gòu)特征,準(zhǔn)確構(gòu)造函數(shù),將問題轉(zhuǎn)化為函數(shù)值大小關(guān)系的比較問題,從而利用導(dǎo)數(shù)確定函數(shù)的單調(diào)性和圖象來進(jìn)行求解.典例9.(2021年全國高考乙卷數(shù)學(xué)(文)試題)設(shè)SKIPIF1<0,若SKIPIF1<0為函數(shù)SKIPIF1<0的極大值點(diǎn),則()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【解析】【分析】先考慮函數(shù)的零點(diǎn)情況,注意零點(diǎn)左右附近函數(shù)值是否變號(hào),結(jié)合極大值點(diǎn)的性質(zhì),對(duì)進(jìn)行分類討論,畫出圖象,即可得到SKIPIF1<0所滿足的關(guān)系,由此確定正確選項(xiàng).【詳解】若SKIPIF1<0,則SKIPIF1<0為單調(diào)函數(shù),無極值點(diǎn),不符合題意,故SKIPIF1<0.SKIPIF1<0有SKIPIF1<0和SKIPIF1<0兩個(gè)不同零點(diǎn),且在SKIPIF1<0左右附近是不變號(hào),在SKIPIF1<0左右附近是變號(hào)的.依題意,為函數(shù)的極大值點(diǎn),SKIPIF1<0在SKIPIF1<0左右附近都是小于零的.當(dāng)SKIPIF1<0時(shí),由SKIPIF1<0,SKIPIF1<0,畫出SKIPIF1<0的圖象如下圖所示:由圖可知SKIPIF1<0,SKIPIF1<0,故SKIPIF1<0.當(dāng)SKIPIF1<0時(shí),由SKIPIF1<0時(shí),SKIPIF1<0,畫出SKIPIF1<0的圖象如下圖所示:由圖可知SKIPIF1<0,SKIPIF1<0,故SKIPIF1<0.綜上所述,SKIPIF1<0成立.故選:D04構(gòu)建函數(shù)模型并結(jié)合其幾何意義研究函數(shù)的最值問題和證明不等式【核心提示】向量、復(fù)數(shù)、圓錐曲線等數(shù)學(xué)概念具有明顯的幾何意義,可利用圖形觀察求解有關(guān)問題;靈活應(yīng)用一些幾何結(jié)構(gòu)的代數(shù)形式,如斜率、距離公式等.應(yīng)用幾何意義法解決問題需要熟悉常見的幾何結(jié)構(gòu)的代數(shù)形式,主要有:①比值——可考慮直線的斜率;②二元一次式—可考慮直線的截距;③根式分式——可考慮點(diǎn)到直線的距離;④根式——可考慮兩點(diǎn)間的距離.【典例分析】典例10.(2021·天津·高考真題)在邊長為1的等邊三角形ABC中,D為線段BC上的動(dòng)點(diǎn),SKIPIF1<0且交AB于點(diǎn)E.SKIPIF1<0且交AC于點(diǎn)F,則SKIPIF1<0的值為____________;SKIPIF1<0的最小值為____________.【答案】1SKIPIF1<0【分析】設(shè)SKIPIF1<0,由SKIPIF1<0可求出;將SKIPIF1<0化為關(guān)于SKIPIF1<0的關(guān)系式即可求出最值.【詳解】設(shè)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0為邊長為1的等邊三角形,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0SKIPIF1<0,SKIPIF1<0為邊長為SKIPIF1<0的等邊三角形,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0SKIPIF1<0,所以當(dāng)SKIPIF1<0時(shí),SKIPIF1<0的最小值為SKIPIF1<0.故答案為:1;SKIPIF1<0.典例11.(2022·全國·模擬預(yù)測)如圖,直三棱柱ABC?A1B1C1中,AC⊥BC,AC=23,BC=2,AA1=27,SKIPIF1<0為線段SKIPIF1<0上動(dòng)點(diǎn),AP+PC1【答案】
SKIPIF1<0
47?29##?2+47【解析】【分析】以SKIPIF1<0為軸,將四邊形SKIPIF1<0旋轉(zhuǎn)到與四邊形ABB1A1同在一個(gè)平面內(nèi),利用當(dāng)SKIPIF1<0、SKIPIF1<0、C1三點(diǎn)共線時(shí),可求得AP+PC1的最小值;設(shè)BP=t0≤t≤27,則B1P=27?t,利用基本不等式可求得tan∠PAB+∠PC1B1,利用等號(hào)成立的條件求出t的值,即可求得【詳解】由已知條件知AB=A以SKIPIF1<0為軸,將四邊形SKIPIF1<0旋轉(zhuǎn)到與四邊形ABB1A1同在一個(gè)平面內(nèi),連接AC1交SKIPIF1<0于點(diǎn)T,此時(shí)SKIPIF1<0、SKIPIF1<0、C1三點(diǎn)共線距離最小,點(diǎn)T滿足使AP+PC1最小,易得AC設(shè)BP=t0≤t≤27,則在Rt△ABP中,tan在Rt△B1所以,tan=8令x=47?t,則令f≤2當(dāng)且僅當(dāng)x=47?t=8時(shí),即當(dāng)此時(shí)BPB故答案為:SKIPIF1<0;47?29.典例12.(2023·全國·高三對(duì)口高考)已知函數(shù)SKIPIF1<0.(1)證明:當(dāng)SKIPIF1<0且SKIPIF1<0時(shí),SKIPIF1<0;(2)若存在實(shí)數(shù)SKIPIF1<0,使得函數(shù)SKIPIF1<0在SKIPIF1<0上的值域?yàn)镾KIPIF1<0,求實(shí)數(shù)m的取值范圍.【答案】(1)證明見解析(2)SKIPIF1<0【分析】(1)作出函數(shù)SKIPIF1<0的大致圖象,結(jié)合SKIPIF1<0且SKIPIF1<0,及函數(shù)的單調(diào)性知,SKIPIF1<0,再結(jié)合函數(shù)的解析式化簡及基本不等式可證明SKIPIF1<0;(2)分SKIPIF1<0,SKIPIF1<0或SKIPIF1<0三種情況分別討論求解m的取值范圍,最后綜合討論結(jié)果可得答案.【詳解】(1)證明:函數(shù)SKIPIF1<0的圖象可由SKIPIF1<0的圖象向上平移1個(gè)單位,然后保留x軸上交點(diǎn)以及其上方部分不變,將x軸下方部分翻折到x軸上方得到,其圖象如圖示:由SKIPIF1<0且SKIPIF1<0知,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則由SKIPIF1<0得SKIPIF1<0,由于SKIPIF1<0,(因?yàn)镾KIPIF1<0,故等號(hào)不成立),故SKIPIF1<0,即SKIPIF1<0.(2)由題意存在實(shí)數(shù)SKIPIF1<0,使得函數(shù)SKIPIF1<0在SKIPIF1<0上的值域?yàn)镾KIPIF1<0,可知SKIPIF1<0;由SKIPIF1<0可知當(dāng)SKIPIF1<0或SKIPIF1<0,則必有SKIPIF1<0,不合題意;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,而SKIPIF1<0,與SKIPIF1<0矛盾;∴SKIPIF1<0或SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),由SKIPIF1<0是減函數(shù)知,SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0,得SKIPIF1<0,不合題意,舍去;當(dāng)SKIPIF1<0時(shí),由SKIPIF1<0是增函數(shù)知,SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0是方程SKIPIF1<0的兩個(gè)不相等實(shí)根,且這兩根均大于1,∴SKIPIF1<0且SKIPIF1<0,SKIPIF1<0,解得SKIPIF1<0,∴實(shí)數(shù)m的取值范圍是SKIPIF1<0.05構(gòu)建幾何模型研究代數(shù)問題【核心提示】1.在解決問題的過程中對(duì)題目中的一些代數(shù)式進(jìn)行幾何意義分析,將其轉(zhuǎn)化為與幾何結(jié)構(gòu)相關(guān)的問題,通過解決幾何問題達(dá)到解決代數(shù)問題的目的.此方法適用于難以直接解決的抽象問題,可利用圖形使其直觀化,再通過圖形的性質(zhì)快速解決問題.破解此類題的關(guān)鍵點(diǎn):①分析特征,一般從圖形結(jié)構(gòu)、性質(zhì)等方面分析代數(shù)式是否具有幾何意義.②進(jìn)行轉(zhuǎn)化,把要解決的代數(shù)問題轉(zhuǎn)化為幾何問題.③得出結(jié)論,將幾何問題得出的結(jié)論回歸到代數(shù)問題中,進(jìn)而得出結(jié)論.2.幾何圖形有關(guān)的最值問題,若通過代數(shù)方法計(jì)算則小題大做,計(jì)算繁雜,解題時(shí)要充分考慮幾何關(guān)系,充分利用“三角形兩邊之和大于第三邊”、“兩點(diǎn)之間線段最短”等幾何結(jié)論.【典例分析】典例13.(2023春·河南·高三河南省淮陽中學(xué)校聯(lián)考開學(xué)考試)已知平面向量SKIPIF1<0,SKIPIF1<0滿足SKIPIF1<0,SKIPIF1<0,SKIPIF1<0的夾角為SKIPIF1<0,若SKIPIF1<0,則SKIPIF1<0的最小值為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【分析】不妨設(shè)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,利用數(shù)量積和模長的坐標(biāo)表示求得SKIPIF1<0點(diǎn)的軌跡即可求解.【詳解】因?yàn)镾KIPIF1<0,SKIPIF1<0,SKIPIF1<0的夾角為SKIPIF1<0,所以SKIPIF1<0,不妨設(shè)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0,設(shè)SKIPIF1<0,由SKIPIF1<0得SKIPIF1<0在以SKIPIF1<0為圓心,1為半徑的圓上,或所以SKIPIF1<0的最小值為SKIPIF1<0.故選:C典例14.(2022·浙江新昌·高三期末)如圖,正方體SKIPIF1<0中,SKIPIF1<0是棱SKIPIF1<0的中點(diǎn),SKIPIF1<0是側(cè)面SKIPIF1<0上的動(dòng)點(diǎn),且SKIPIF1<0SKIPIF1<0平面SKIPIF1<0.記SKIPIF1<0與平面SKIPIF1<0所成角為SKIPIF1<0,SKIPIF1<0與SKIPIF1<0所成角為SKIPIF1<0,則(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【解析】【分析】利用作圖,構(gòu)造出SKIPIF1<0和SKIPIF1<0,分別求SKIPIF1<0和SKIPIF1<0,比較后,即可判斷選項(xiàng).【詳解】如圖,取SKIPIF1<0,SKIPIF1<0,SKIPIF1<0的中點(diǎn)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,連接SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,設(shè)棱長為2,SKIPIF1<0SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,所以SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0,同理SKIPIF1<0平面SKIPIF1<0,,且SKIPIF1<0SKIPIF1<0,所以平面SKIPIF1<0平面SKIPIF1<0,所以點(diǎn)SKIPIF1<0在線段SKIPIF1<0上,因?yàn)镾KIPIF1<0平面SKIPIF1<0,所以SKIPIF1<0,因?yàn)镾KIPIF1<0,所以SKIPIF1<0或SKIPIF1<0為SKIPIF1<0,SKIPIF1<0,當(dāng)點(diǎn)SKIPIF1<0在SKIPIF1<0的中點(diǎn)時(shí),SKIPIF1<0最小,此時(shí)SKIPIF1<0最大,最大值是SKIPIF1<0,當(dāng)點(diǎn)SKIPIF1<0與點(diǎn)SKIPIF1<0,SKIPIF1<0重合時(shí),SKIPIF1<0最大,此時(shí)SKIPIF1<0最小,最小值是SKIPIF1<0,當(dāng)點(diǎn)SKIPIF1<0在SKIPIF1<0的中點(diǎn)時(shí),SKIPIF1<0,當(dāng)點(diǎn)SKIPIF1<0與點(diǎn)SKIPIF1<0,SKIPIF1<0重合時(shí),SKIPIF1<0最小,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0.故選:D典例15.(2022·全國·高三專題練習(xí))求方程SKIPIF1<0的實(shí)根個(gè)數(shù).【答案】2【分析】將方程根的個(gè)數(shù)轉(zhuǎn)化為函數(shù)圖象交點(diǎn)個(gè)數(shù),利用數(shù)形結(jié)合求解即可.【詳解】方程SKIPIF1<0的實(shí)根個(gè)數(shù)就是函數(shù)SKIPIF1<0與SKIPIF1<0圖象的交點(diǎn)的個(gè)數(shù),SKIPIF1<0表示的SKIPIF1<0的上半部分,在平面直角坐標(biāo)系中畫出函數(shù)SKIPIF1<0與SKIPIF1<0的圖象,可知有2個(gè)交點(diǎn),故方程SKIPIF1<0的實(shí)根個(gè)數(shù)為2.06構(gòu)建解析幾何中的斜率、截距、距離等模型研究最值等問題【核心提示】1.在解析幾何的解題過程中,通常要數(shù)形結(jié)合,挖掘題中所給的代數(shù)關(guān)系式和幾何關(guān)系式,構(gòu)建解析幾何模型并應(yīng)用模型的幾何意義求最值或范圍;常見的幾何結(jié)構(gòu)的代數(shù)形式主要有:①比值——可考慮直線的斜率;②二元一次式——可考慮直線的截距;③根式分式——可考慮點(diǎn)到直線的距離;④根式——可考慮兩點(diǎn)間的距離.2.圓錐曲線數(shù)形結(jié)合法:是根據(jù)圓錐曲線中許多對(duì)應(yīng)的長度、數(shù)式等都具有一定的幾何意義,挖掘題目中隱含的幾何意義,采用數(shù)形結(jié)合思想,快速解決某些相應(yīng)的問題.破解此類題的關(guān)鍵點(diǎn):①畫出圖形,畫出滿足題設(shè)條件的圓錐曲線的圖形,以及相應(yīng)的線段、直線等;②數(shù)形求解,通過數(shù)形結(jié)合,利用圓錐曲線的定義、性質(zhì)、直線與圓錐曲線的位置關(guān)系、圓與圓錐曲線的位置關(guān)系等進(jìn)行分析與求解;③得出結(jié)論,結(jié)合題目條件進(jìn)行分析,得出所要求解的結(jié)論.3.破解圓錐曲線問題的關(guān)鍵是畫出相應(yīng)的圖形,注意數(shù)和形的相互滲透,并從相關(guān)的圖形中挖掘?qū)?yīng)的信息進(jìn)行研究.直線與圓錐曲線的位置關(guān)系的轉(zhuǎn)化有兩種:①通過數(shù)形結(jié)合建立相應(yīng)的關(guān)系式;②通過代數(shù)形式轉(zhuǎn)化為二元二次方程組的解的問題進(jìn)行討論.【典例分析】典例16.(2022·安徽省舒城中學(xué)高二階段練習(xí))已知函數(shù)SKIPIF1<0,且SKIPIF1<0,則當(dāng)SKIPIF1<0時(shí),SKIPIF1<0的取值范圍是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【解析】判斷函數(shù)SKIPIF1<0的奇偶性和單調(diào)性,將不等式進(jìn)行轉(zhuǎn)化,利用直線和圓的位置關(guān)系,結(jié)合數(shù)形結(jié)合和SKIPIF1<0的幾何意義即可得到結(jié)論.【詳解】由題意可知,SKIPIF1<0的定義域?yàn)镾KIPIF1<0,由SKIPIF1<0,得SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0單調(diào)遞增,SKIPIF1<0,所以SKIPIF1<0為奇函數(shù),SKIPIF1<0有SKIPIF1<0,∴SKIPIF1<0,整理得SKIPIF1<0,SKIPIF1<0時(shí)即SKIPIF1<0的取值區(qū)域如下圖陰影部分所示:
∴SKIPIF1<0表示直線SKIPIF1<0在過圖中陰影部分的點(diǎn)時(shí)斜率SKIPIF1<0,即問題轉(zhuǎn)化為直線與陰影區(qū)域有交點(diǎn)時(shí),SKIPIF1<0的取值范圍,當(dāng)與半圓相切,SKIPIF1<0取最大值,而此時(shí)圓心SKIPIF1<0到SKIPIF1<0的距離SKIPIF1<0,得SKIPIF1<0;當(dāng)交半圓于右端點(diǎn)SKIPIF1<0時(shí),SKIPIF1<0取最小值為SKIPIF1<0,所以SKIPIF1<0的取值范圍SKIPIF1<0.故選:A.典例17.(2023春·廣西柳州·高三統(tǒng)考階段練習(xí))已知SKIPIF1<0,且SKIPIF1<0,i為虛數(shù)單位,則SKIPIF1<0的最大值是_______.【答案】4【分析】根據(jù)復(fù)數(shù)的幾何意義可知:復(fù)數(shù)z表示以SKIPIF1<0為圓心的半徑為1的圓C,而SKIPIF1<0表示圓C上的點(diǎn)到SKIPIF1<0的距離,結(jié)合圖形即可得SKIPIF1<0的最大值.【詳解】解:記SKIPIF1<0,因?yàn)镾KIPIF1<0,即SKIPIF1<0,所以復(fù)數(shù)z表示以SKIPIF1<0為圓心,半徑為1的圓C,而SKIPIF1<0,表示圓C上的點(diǎn)到SKIPIF1<0的距離,所以距離最大為圓心到SKIPIF1<0的距離再加上半徑,故SKIPIF1<0的最大值為SKIPIF1<0.故答案為:4典例18.(2023·吉林·統(tǒng)考二模)已知函數(shù)SKIPIF1<0,點(diǎn)SKIPIF1<0、SKIPIF1<0是函數(shù)SKIPIF1<0圖象上不同的兩個(gè)點(diǎn),則SKIPIF1<0(SKIPIF1<0為坐標(biāo)原點(diǎn))的取值范圍是___________.【答案】SKIPIF1<0【分析】作出函數(shù)SKIPIF1<0的圖形,求出過點(diǎn)過原點(diǎn)且與函數(shù)SKIPIF1<0的圖象相切的直線的方程,以及函數(shù)SKIPIF1<0的漸近線方程,結(jié)合兩角差的正切公式,數(shù)形結(jié)合可得出SKIPIF1<0的取值范圍.【詳解】當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,則SKIPIF1<0,所以,函數(shù)SKIPIF1<0在SKIPIF1<0上為增函數(shù);當(dāng)SKIPIF1<0時(shí),由SKIPIF1<0可得SKIPIF1<0,即SKIPIF1<0,作出函數(shù)SKIPIF1<0的圖象如下圖所示:設(shè)過原點(diǎn)且與函數(shù)SKIPIF1<0的圖象相切的直線的方程為SKIPIF1<0,設(shè)切點(diǎn)為SKIPIF1<0,所以,切線方程為SKIPIF1<0,將原點(diǎn)坐標(biāo)代入切線方程可得SKIPIF1<0,即SKIPIF1<0,構(gòu)造函數(shù)SKIPIF1<0,其中SKIPIF1<0,則SKIPIF1<0,所以,函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,且SKIPIF1<0,由SKIPIF1<0,解得SKIPIF1<0,所以,SKIPIF1<0,而函數(shù)SKIPIF1<0的漸近線方程為SKIPIF1<0,設(shè)直線SKIPIF1<0與SKIPIF1<0的夾角為SKIPIF1<0,設(shè)直線SKIPIF1<0的傾斜角為SKIPIF1<0,則SKIPIF1<0,結(jié)合圖形可知,SKIPIF1<0.故答案為:SKIPIF1<0.【點(diǎn)睛】關(guān)鍵點(diǎn)點(diǎn)睛:解本題的關(guān)鍵在于求出設(shè)過原點(diǎn)且與函數(shù)SKIPIF1<0的圖象相切的直線的方程以及函數(shù)SKIPIF1<0的漸近線方程,再利用兩角差的正切公式以及數(shù)形結(jié)合思想求解.07構(gòu)建方程模型或函數(shù)模型,結(jié)合其圖象研究零點(diǎn)的范圍與個(gè)數(shù)問題【核心提示】討論方程的解(或函數(shù)零點(diǎn))的問題一般可以構(gòu)造兩個(gè)函數(shù),將方程解的個(gè)數(shù)轉(zhuǎn)化為兩條曲線的交點(diǎn)個(gè)數(shù).構(gòu)造函數(shù)時(shí),要先對(duì)方程進(jìn)行變形,盡量構(gòu)造兩個(gè)比較熟悉的函數(shù).方程解的個(gè)數(shù)問題可通過構(gòu)造函數(shù),轉(zhuǎn)化為函數(shù)圖象的交點(diǎn)個(gè)數(shù)問題;fx<gx可轉(zhuǎn)化為函數(shù)y=fx和函數(shù)y=gx圖象的位置關(guān)系問題.【典例分析】典例19.【多選題】(2023春·廣東韶關(guān)·高三校聯(lián)考開學(xué)考試)已知函數(shù),的零點(diǎn)分別為,則(
)A. B.C. D.【答案】BC【分析】根據(jù)函數(shù)的圖象關(guān)于直線對(duì)稱建立的關(guān)系,由圖象判斷所在區(qū)間,逐項(xiàng)判斷.【詳解】對(duì)A,,由的圖象向右向上各平移一個(gè)單位得到圖象,函數(shù)的圖象關(guān)于直線對(duì)稱,即可知點(diǎn)A,B關(guān)于直線對(duì)稱.,故A不正確;對(duì)B,由,故B正確;對(duì)C,,等號(hào)不成立,,故C正確;對(duì)D,由圖知,,易知函數(shù)在上單調(diào)遞減,所以,故D不正確.故選:BC.典例20.(2023春·北京大興·高三??奸_學(xué)考試)已知函數(shù),則函數(shù)的零點(diǎn)個(gè)數(shù)為___________.【答案】【分析】當(dāng)時(shí)直接求解函數(shù)零點(diǎn),當(dāng)時(shí),轉(zhuǎn)化為與的圖象的交點(diǎn)個(gè)數(shù)求解即可.【詳解】解:當(dāng)時(shí),,解得;當(dāng)時(shí),得,易得,作出函數(shù),的圖象,如圖,所以,結(jié)合指數(shù)函數(shù)與冪函數(shù)性質(zhì),函數(shù),在有兩個(gè)交點(diǎn),所以當(dāng)時(shí),有兩個(gè)實(shí)數(shù)根,所以,函數(shù)的零點(diǎn)個(gè)數(shù)為故答案為:典例21.(2021·北京·高考真題)已知函數(shù)SKIPIF1<0,給出下列四個(gè)結(jié)論:①若SKIPIF1<0,SKIPIF1<0恰有2個(gè)零點(diǎn);②存在負(fù)數(shù)SKIPIF1<0,使得SKIPIF1<0恰有1個(gè)零點(diǎn);③存在負(fù)數(shù)SKIPIF1<0,使得SKIPIF1<0恰有3個(gè)零點(diǎn);④存在正數(shù)SKIPIF1<0,使得SKIPIF1<0恰有3個(gè)零點(diǎn).其中所有正確結(jié)論的序號(hào)是_______.【答案】①②④【分析】由SKIPIF1<0可得出SKIPIF1<0,考查直線SKIPIF1<0與曲線SKIPIF1<0的左、右支分別相切的情形,利用方程思想以及數(shù)形結(jié)合可判斷各選項(xiàng)的正誤.【詳解】對(duì)于①,當(dāng)SKIPIF1<0時(shí),由SKIPIF1<0,可得SKIPIF1<0或SKIPIF1<0,①正確;對(duì)于②,考查直線SKIPIF1<0與曲線SKIPIF1<0相切于點(diǎn)SKIPIF1<0,對(duì)函數(shù)SKIPIF1<0求導(dǎo)得SKIPIF1<0,由題意可得SKIPIF1<0,解得SKIPIF1<0,所以,存在SKIPIF1<0,使得SKIPIF1<0只有一個(gè)零點(diǎn),②正確;對(duì)于③,當(dāng)直線SKIPIF1<0過點(diǎn)SKIPIF1<0時(shí),SKIPIF1<0
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 西南民族大學(xué)2026年人才引進(jìn)筆試考試備考試題及答案解析
- 電機(jī)員工作考核標(biāo)準(zhǔn)
- 2025山西晉中榆次區(qū)醫(yī)療集團(tuán)招聘聘用制工作人員42人考試筆試備考題庫及答案解析
- 2025中國信達(dá)深圳分公司招聘1人考試筆試模擬試題及答案解析
- 2025重慶市沙坪壩區(qū)歌樂山社區(qū)衛(wèi)生服務(wù)中心招聘醫(yī)師2人考試筆試備考題庫及答案解析
- 特種設(shè)備安裝調(diào)試人員理論知識(shí)考試大綱含答案
- 2025四川德陽市旌陽區(qū)孝泉鎮(zhèn)衛(wèi)生院(旌陽區(qū)第二人民醫(yī)院)招聘2人筆試考試備考試題及答案解析
- 九年級(jí)化學(xué)(酸和堿)2025-2026年上學(xué)期期中試題及答案
- 2025年高職建筑(建筑工程計(jì)量)試題及答案
- 2025年中職計(jì)算機(jī)應(yīng)用(辦公自動(dòng)化)試題及答案
- 高一語文經(jīng)典古代詩詞賞析
- 協(xié)助扣劃存款通知書
- 自動(dòng)控制原理課程設(shè)計(jì)報(bào)告恒溫箱
- 江西d照駕駛員理論考試
- 水利水電工程建設(shè)參建各方安全生產(chǎn)職責(zé)
- GB/T 30340-2013機(jī)動(dòng)車駕駛員培訓(xùn)機(jī)構(gòu)資格條件
- GB/T 19215.1-2003電氣安裝用電纜槽管系統(tǒng)第1部分:通用要求
- GB/T 13298-2015金屬顯微組織檢驗(yàn)方法
- 滴滴打車用戶出行習(xí)慣報(bào)告
- 核對(duì)稿-400單元開車
- 保密管理-保密教育培訓(xùn)簽到簿
評(píng)論
0/150
提交評(píng)論