版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
SUPPORTPOOL
OFEXPERTSPROGRAMME
AIAuditing
ProposalforAIleaflets
byDr.GemmaGALDONCLAVELL
AIAuditing-ProposalforAIleaflets
2
AspartoftheSPEprogramme,theEDPBmaycommissioncontractorstoprovidereportsandtoolsonspecifictopics.
TheviewsexpressedinthedeliverablesarethoseoftheirauthorsandtheydonotnecessarilyreflecttheofficialpositionoftheEDPB.TheEDPBdoesnotguaranteetheaccuracyoftheinformation
includedinthedeliverables.NeithertheEDPBnoranypersonactingontheEDPB’sbehalfmaybeheldresponsibleforanyusethatmaybemadeoftheinformationcontainedinthedeliverables.
Someexcerptsmayberedactedorremovedfromthedeliverablesastheirpublicationwould
underminetheprotectionoflegitimateinterests,including,interalia,theprivacyandintegrityofanindividualregardingtheprotectionofpersonaldatainaccordancewithRegulation(EU)2018/1725and/orthecommercialinterestsofanaturalorlegalperson.
AIAuditing-ProposalforAIleaflets
3
TableofContents
Background 4
1.Basicdefinitions 4
2.Whyalgorithmicleaflets 5
3.FrommodelcardstoAIleaflets 7
4.AIleaflettemplate 9
References 12
DocumentinitiallysubmittedinJanuary2023,updatedinJune2024
AIAuditing-ProposalforAIleaflets
4
Background
Since2016,GDPRhaslaidoutprinciplesandproceduresthathaveshapedhowissuesrelatedtodataprotectionandsocialimpactareaddressedindata-intensivetechnologies.Thenotionsoftransparency(articles13and14GDPR),“humanintervention”(article22.3GDPR),informationaboutthelogicoftheprocessing(article14.2.gGDPR),accountability(article5.2GDPR),dataprotectionbydesignandbydefault(article25GDPR)andauditability(includingthenotionofconformityassessmentintheAIact)haveshapedashared,globalunderstandingofwhatdataprotectionmeansinpractice.
Tobeaccountablemeans,amongothers,acompletetraceabilityofallthedesigndecisions,takenbydesign,properlydocumented,analysedinadvance,andbackedwithproofandevidence.Butwhiletheaccountabilityprincipleshavebeenlaidout,itisstillunclearhowtheseprinciplescanbeimplementedandcheckedinpracticeinwaysthatcoverallrelevantmomentsinthesupplychainandfacilitateenforcementbythesupervisoryauthorities.
ThisisparticularlyrelevantatatimewhenweseetheaccountabilitychaingettingincreasinglycomplexinAI,withcompaniesoftenbuyingAI(foundational)modelsandservicesfromthirdpartiesandretrainingthemwithadditionaldataorusingthemontheirowndecision-makingprocesses.
WehavedevelopedAIleafletsasakeytoolofeffectiveAItransparencyforAIusersandimplementors,butalsoasamechanismtoprotectSMEsandprovidealevel-playingfieldforallindustryactors.AIimplementorsandthoseusingAI,bothend-usersandAI“clients”,currentlylackstandardizedtoolstoexercisefree,Informedchoice.Intheabsenceofthesetools,entitiesareforcedtorelyonmarketingclaimsandunverifiedinformationwhichmaycreaterisksfortheirusersandexposeorganizationsto“inheritedliability”.
InthissecondreportfortheEuropeanDataProtectionBoard(EDPB),wedevelopaproposalfor“AIleaflets”,aconceptexportedfromthemedicaldomaintoenforceaprioritransparencyforAIsystemsandproducts,andwhichdrawsonpreviousworkdevelopedfortheSpanishDPAandtheSpanishMinistryofLabor.AIleafletscomplementexistingtoolslikeModelCards,impactassessments,AIauditsandalgo-scores.Duetotheirtechnicalnature,AileafletsareclosetoModelCards.AstheinformationinanAIleafletisintendedforatech-savvyaudience,Aiimplementorsshouldimplementthealgo-scoresweproposedinourfirstreporttofacilitateand-userunderstandingandchoice.
1.Basicdefinitions
Objectivesofthealgorithmicleaflet:toprovideaccessibleinformationthatpromotestransparency,auditabilityandrecoursetothosebuying,implementingorbeingimpactedbyAIsystems.TheleafletfacilitatescompliancewithrequirementsincludedinGDPRandAIAct.
Definitionofalgorithmicsystem:softwarethatisdevelopedwithoneormoretechniquesandMachineLearningapproaches,includingsupervised,unsupervisedandreinforcementlearning,usingawidevarietyofmethodsincludingdeeplearning;Logic-andknowledge-basedapproaches,includingknowledgerepresentation,inductive(logic)programming,knowledgebases,inferenceanddeductiveengines,(symbolic)reasoningandexpertsystems;andstatisticalapproaches,Bayesianestimation,searchandoptimizationmethodsthatcan,foragivensetofhuman-definedobjectives,generateoutputssuchascontent,predictions,recommendations,ordecisionsinfluencingtheenvironmentstheyinteractwith(adaptedfromthedefinitionofartificialintelligencecontainedinAIActart.3.1).
Examplesofaffectedsystems:thosewhereoneormorealgorithmsareatthecenterofadecision-makingprocessthathasimplicationsforfundamentalrightsorindividual/collectivelife-chances,includingsocialmediacontentrecommenders,price/retributionmodelsinconsumerservices,hiring
AIAuditing-ProposalforAIleaflets
5
decisions,individual/groupriskassessmentindifferentsettings(facialrecognitionasproofoflife/identity,benefitallocation,recidivism,etc)andLargeandSmallLanguageandImageModels(GenerativeAI)usedtointeractwithcomplexorunstructureddatawhichproducenewcontentusersrelyontounderstandanissueormakedecisions.
Inheritedliability:WhenoneentitybuysAIproductsfromanotherandusesthemintheirowndecision-makingprocessesorproductdesign,itcanbeheldlegallyresponsibleforanyissuesthatleadtoharmful,inefficientordiscriminatorydecisionsorassessments.LeafletsprovidekeyinformationtoAIclientsanduserssotheycanmakebetterdecisionswhenchoosinganAIsystemorprovider.
2.Whyalgorithmicleaflets
Inthelastfewyears,atleast170setsofethicalorhuman-rightsbasedAIprinciples,frameworks,andguidelineshavebeendevelopedtosupportresponsibleAIdevelopmentanddeploymentinthepublicandprivatesectors.
1
Researchhasshownthatagrowingconsensushasemergedaroundcoreprinciples,suchastheneedforaccountability,privacyandsecurity,transparencyandexplainability,fairnessandnon-discrimination,professionalresponsibility,humancontrol,andthepromotionofhumanvalues.
2
TheseprinciplesandvalueshavemadeitintodiscussionsaroundhowtoregulateAI-relatedtechnologies,andbothexistingEUregulationssuchastheGeneralDataProtectionRegulation(GDPR)andtheDigitalServicesAct(DSA)andnewregulatoryproposalsbeingdiscussedrightnow,suchastheAIACT,echothisemergentconsensus.
Butwhilesignificantstepshavebeentakentoalignhigh-levelapproachesandprinciples,animportantlessonfromtheGDPR,passedin2016,isthatenforcementcanbeachallenge.AsAIprinciplesgainacceptancewithinthepublicandprivatesectors,thefocusisshiftingtothedevelopmentofappropriatestrategiestooperationalizethemintoresponsiblepractices.Yet,asNonneckeandDawsonhighlight,“thisprocessisnotstraightforward”.
3
Onewaytoacceleratetheadoptionofenforcementpracticesisbydrawingonthelonghistoryofhowmodernsocietieshavedealtwiththenegativeexternalitiesofinnovation,howcomplexscientificinsighthasbeencommunicatedtousersandcitizensinrecenthistory,andthetoolsthathaveemergedtoprotectpeopleandrightsinhighlyinnovativeprocesses.
Lookingatthehistoryoftheregulationofinnovation,arelevantprecedentandexamplefortheeffectiveregulationofAIsystemsandproductsisthemedicalsector.Inthelate18thCenturyandearly19thcentury,manycompaniesdevelopingdrugsandmedicinewouldmarkettheirproductsunderfalse,untestedpremises.In1902,oneadvertisementforamedicalproductclaimed,“Nootherpreparationhashaditstherapeuticvaluemorethoroughlydefinedorbetterestablished...[as]aremedyinthetreatmentofcoughs,bronchitis...asthma,laryngitis,pneumonia,andwhoopingcough.”Thedrugwasheroin.
4
1AIEthicsGuidelinesGlobalInventory,”AlgorithmWatch,
/
2JessicaFjeldetal.(2020),PrincipledArtificialIntelligence:MappingConsensusinEthicalandRights-basedApproachestoPrinciplesforAI,BerkmanKleinCenterforInternet&Society,
/urn-3:HUL.InstRepos:42160420
3Nonnecke,B.andDawson,B.(2021)HumanRightsImplicationsofAlgorithmicImpact
Assessments:PriorityConsiderationstoGuideEffectiveDevelopmentandUse.CarrCenterDiscussionPaperSeries,
/files/cchr/files/nonneckeanddawsonhumanrightsimplications.
4Hamburg,M.A.(2010),Innovation,Regulation,andtheFDA.NEnglJMed;363:2228-2232.
/doi/full/10.1056/NEJMsa1007467
AIAuditing-ProposalforAIleaflets
6
Andwhilethe20thCenturysawenormousandhugelybeneficialadvancesinmedicine,initsearlydecadesmanycompaniesmarketedtheirproductswithavarietyofunprovenclaims.Itwas,aspharmacologistLouisGoodmancalledit’,a“therapeuticjungle”,notmuchdifferentfromatechandAIindustrythatmanyhavedescribedasthe“WildWest”.Ittookseveralpublichealthcrisestopullmedicineintothemodernerabytriggeringnewregulatoryauthoritiesandstandards.ThishappenedearlierintheUS,wheretheElixirSulfanilamidecaseandits107victimspromptedthepassingoftheFood,Drug,andCosmeticActin1938.Thelawestablishedthatdrugsintendedtopreventortreatdiseasehadtoprovetheyweresafeforuseaslabeledandreceiveaprioriauthorizationbyprovidingkeydatatotheregulator.“Forthefirsttime,beforepharmaceuticalcompaniescouldmarketadrug,theyhadtoshowatleastthattheproductwassafe.”
5
Itwasunclearatfirstwhatdatahadtobesharedtoprovecompliance,butovertimestandardizedassessmentsemergedandbecamestandardpracticeacrossthepharmaceuticalindustry.
ThisearlydevelopmentofaregulatoryframeworkfordrugsmeantthattheUSmanagedtoprotectitscitizensfromthehealthcrisisthatpromptedthedevelopmentofsimilarprotectionsinEurope.TheUSregulatordeniedapprovaltothalidomide,adrugwidelymarketedinEuropeasasedativeandantiemeticagentandrecommendedforusebywomenintheirfirsttrimesterofpregnancy,becauseitsmanufacturerfailedtoshowbasicaspectsoftheproduct'spharmacologicandtoxicologiccharacteristics.IntheEU,manybabiesdiedandthousandswerebornwithseverehealthproblems.ThethalidomidetragedyservedasthecatalystforharmonizedEuropeanpharmaceuticalregulation,whichisnowcentralisedundertheEuropeanMedicinesAgency(EMA).
OneofthekeycompetenciesoftheEMAisto“provideguidanceandtemplates[…]withpracticaladviceonhowtodrawuptheproductinformationforhumanmedicines,whichincludes[…]apackageleaflet”,definedas“Theleafletineverypackofmedicinethatcontainsinformationonthemedicineforend-users,suchaspatientsandanimalowners.”
6
Thisleafletisthemainpieceofwritteninformationthatcitizensreceivewhenusingdrugsthathavebeendesignedtohelpthembutmayharmthem.Togetherwiththemedicalprescriptionandtheassistanceofpharmacystaff,packageleafletsareawaytoprotectandenforcerights,guideproperuseandprovideinformationthatempowerscitizenstounderstandthecharacteristicsandusesofmedicalproducts,aswellaswaystoseekrecourseshouldanythinggowrong.
7
5?bid.
6EMAwebsite
https://www.ema.europa.eu/en/human-regulatory/marketing-authorisation/product-
information-requirements
7Directive2001/83/ECoftheEuropeanParliamentandoftheCouncilestablishedthatsuchpackageleafletsmustincludeinformationon:(a)thenameofthemedicinalproductfollowedbyitsstrength
andpharmaceuticalform,and,ifappropriate,whetheritisintendedforbabies,childrenoradults;
wheretheproductcontainsuptothreeactivesubstances,theinternationalnonproprietaryname
(INN)shallbeincluded,or,ifonedoesnotexist,thecommonname;(b)astatementoftheactive
substancesexpressedqualitativelyandquantitativelyperdosageunitoraccordingtotheformof
administrationforagivenvolumeorweight,usingtheircommonnames;(c)thepharmaceuticalformandthecontentsbyweight,byvolumeorbynumberofdosesoftheproduct;(d)alistofthose
excipientsknowntohavearecognizedactionoreffectandincludedinthedetailedguidance
publishedpursuanttoArticle65.However,iftheproductisinjectable,oratopicaloreyepreparation,allexcipientsmustbestated;(e)themethodofadministrationand,ifnecessary,therouteof
administration.Spaceshallbeprovidedfortheprescribeddosetobeindicated;(f)aspecialwarningthatthemedicinalproductmustbestoredoutofthereachandsightofchildren;(g)aspecialwarning,
ifthisisnecessaryforthemedicinalproduct;(h)theexpirydateinclearterms(month/year);(i)specialstorageprecautions,ifany;(j)specificprecautionsrelatingtothedisposalofunusedmedicinal
productsorwastederivedfrommedicinalproducts,whereappropriate,aswellasreferencetoanyappropriatecollectionsysteminplace;(k)thenameandaddressofthemarketingauthorisation
holderand,whereapplicable,thenameoftherepresentativeappointedbytheholdertorepresent
AIAuditing-ProposalforAIleaflets
7
3.FrommodelcardstoAIleaflets
TheadaptationofthemedicalleafletmodeltotheAIandtechnicalinnovationspaceholdssignificantpromise,butalsochallenges.Thefirstmainchallengeisdefiningwhatneedstobesharedinthisexerciseof“upfront”transparency.ThecomplexitiesofdoingtransparencyinpracticehavebeenacknowledgedbytheEuropeanParliament,asevidencedbythereleasein2019ofareporton“Agovernanceframeworkforalgorithmicaccountabilityandtransparency”
8
andtheEuropeanCommission’screationoftheEuropeanCentreforAlgorithmicTransparency(ECAT)in2023.
9
Inthisproposalwemoveawayfromanotionofabsolutetransparency,whichmayimplysharingcodeorhighlytechnicaldatathatlaycitizensmaynotbeequippedtounderstandandusetoprotecttheirrights,andfavoranotionof“meaningfultransparency”,drawingonAnnanyandCrawford,
10
Kaminski
11
andtheexcellentworkofSafakandParkerfortheAdaLovelaceInstitute.
12
Bymeaningfultransparencywemeaninformationthat“isrealisticallyaccessibletoamemberofthegeneralpublicatthetimeoftherequest.Itmustbeavailableinpractice,notjustintheory”,astheICOputit.
13
Here,weseektomakeinformationaccessibleforthegeneralpublic,butalsoregulators,civilsocietyorganizationsandallrelevantparties.Thisrequiressomelevelof“translation”ofhighlytechnicalterms,butalsotheincorporationofnon-technicalinformationrelatedtogovernanceandimpacts.
Inordertoengageintherequiredtranslationexercise,wealsodrawoneffortstofosterthedocumentationofthedecisionsmadeduringthedevelopmentandtestingoftechnologyproducts,andspecificallyonthe“ModelCardsforModelReporting”proposaldevelopedbyMitchelletal.whileworkingatGoogle,whichhavebecomeawidespreadtool.
14
Intheirpaper,theydefinemodelcardsas“shortdocumentsaccompanyingtrainedmachinelearningmodelsthatprovidebenchmarkedevaluationinavarietyofconditions,suchasacrossdifferentcultural,demographic,orphenotypicgroups(e.g.,race,geographiclocation,sex,Fitzpatrickskintype)andintersectionalgroups(e.g.,ageandrace,orsexandFitzpatrickskintype)thatarerelevanttotheintendedapplicationdomains.Modelcardsalsodisclosethecontextinwhichmodelsareintendedtobeused,detailsoftheperformanceevaluationprocedures,andotherrelevantinformation.”
15
him;(l)thenumberoftheauthorizationforplacingthemedicinalproductonthemarket;(m)the
manufacturer'sbatchnumber;(n)inthecaseofnon-prescriptionmedicinalproducts,instructionsforuse.
8Availableat
https://www.europarl.europa.eu/RegData/etudes/STUD/2019/624262/EPRSSTU(2019)624262EN.p
df
9See
https://algorithmic-transparency.ec.europa.eu/indexen
10Ananny,M.,&Crawford,K.(2018).Seeingwithoutknowing:Limitationsofthetransparencyidealanditsapplicationtoalgorithmicaccountability.NewMedia&Society,20(3),973–989.
/10.1177/1461444816676645
11Kaminski,MargotE.,UnderstandingTransparencyinAlgorithmicAccountability(June8,2020).ForthcominginCambridgeHandbookoftheLawofAlgorithms,ed.WoodrowBarfield,CambridgeUniversityPress(2020).,UofColoradoLawLegalStudiesResearchPaperNo.20-34,AvailableatSSRN:
/abstract=3622657
12CansuSafakandImogenParker(2020)Meaningfultransparencyand(in)visiblealgorithms.Ada
LovelaceInstitute
/blog/meaningful-transparency-and-invisible-
algorithms/
13SeeICO“Informationinthepublicdomain”
.uk/for-organisations/guidance-
index/freedom-of-information-and-environmental-information-regulations/information-in-the-public-
domain/
14AmazonWebServices,forinstance,usesaversionofModelCardscalled“serviecards”.
15MitchellM,WuS,ZaldivarA,BarnesP,VassermanL,HutchinsonB,SpitzerE,RajiID,GebruT.Modelcardsformodelreporting.InProceedingsoftheconferenceonfairness,accountability,andtransparency2019Jan29(pp.220-229).
/abs/1810.03993
AIAuditing-ProposalforAIleaflets
8
OnelimitationofModelCardswhichweseektoovercomewithAIleafletsistheirfocusonthemodelalone.AsthesupplychainsofAIbecomemorecomplex,thereisaneedtodevelopmechanismsthatcaptureboththeexistenceofdifferentdevelopersandactors,thecombinationofdifferentdatasourcesandthelikelihoodoffinalAIimplementorsusingAImodelsinwaysthatwerenotforeseenorwithnon-testeddata.
Thecombinationofthehistoricalexampleandsuccessesofthemedicalsectorinprotectingpeopleandrightsthroughmeaningful,concretepractices,someindustryeffortstopromotegreatertransparencyinengineeringdecisions,themanyproposalsthathaveemergedfromcivilsocietyandpublicandprivateactorsdemandingactioninthespaceofalgorithmicexplainability,accountabilityandenforcement,aswellastheneedfromregulatorstohavesharedstandardstoassesscompliance,resultsinaproposalforanexerciseofupfrontmeaningfultransparencywhichwehavecalled“algorithmicleaflet”andisdescribedindetailinthenextsection
Therearethreenotesworthhighlightingbeforeengaginginthedescriptionofthealgorithmicleafletfields.First,thattheformatandfieldsproposedareanattempttoovercomesomeoftheissuesthathavemadeotherpolicytoolsdifficulttoimplementinpractice.Specifically,withalgorithmicleafletswesuggestaformatthatistransparentbydesigninthatleafletsaremadeavailabletoendusers,regulatorsandpotentialbuyerstofacilitatedecision-makingandunderstandingofhowalgorithmicsystemswork.Also,itisourexperiencethatDataProtectionImpactAssessmentsareoftendevelopedbylegalteamswhomaynothaveaccesstoortheskillsrequiredtoassesstechnicalprocesses.Theleafletweproposeishighlytechnicalinitsconceptiontoensurethattherelevantinformationiscollectedbythetechnicalteamsmakingtherelevantdecisions,andthattheinformationisreleasedpubliclyatthesametimeasthetechnology.
Second,thatthealgorithmicleafletisnottheonlytoolthatcanorshouldpromotebettertransparency,accountabilityandtrustworthinessaroundAIandtechnologicalsystemsandprocesses.Thedynamicnatureofmanyalgorithmicsystemsmeansthatanyattempttocapturetheirfunctioningandimpactsmaybeshort-livedorincomplete,andsoleafletsneedtobecomplementedbydynamicexerciseslikeaudits,andclearinstructionsonhowoftenandwhentoupdatethem.AIleafletsarenotaperfecttooleither.ButtheyareagoodenoughtoolthattranslatesandstandardizesveryrealconcernsaroundtheneedtobetterunderstandhowAIsystemswork,toempowercitizensandcivilsocietytoengagewithtechnicalsystemsandtoprovidetheAIindustrywithclearinstructionsastowhatconstitutescompliance.
Third,wewanttohighlightthatinordertopromotetheeffectiveincorporationofAIleaflets,itisrecommendedthataprocessofexpertconsultationandindustrypilotingisdesignedandimplementedbeforeitstermsarefinalized.Standardsbecomemeaningfulwhentheyareeitherimposedthroughlawsandregulationsortheresultofcollaborativeprocessesthatallowthemtoconsolidate.Duetotherapidlychangingnatureofthetechnicalfield,andtheimplementationchallengesobservedinothertechnology-relatedregulation,itisdesirablethatthepracticeandimplementationtoolsthatwillneedtoemergetomakelegalprotectionseffectiveandmeaningfulareembracedbyasmanyactorsaspossible.
AIAuditing-ProposalforAIleaflets
9
4.AIleaflettemplate
Thissectionstartsbyprovidinganoverviewoftheleafletcategories.Specificdefinitionsforeachitemareprovidedbelow.
Leafletcategories:
Generalinformation
oSystemname/codeandversion(5.2GDPR)
oLeafletversionandversionhistory(5.2GDPR)
oSystemownerandsuppliersdata
oSuppliers’role
oRisklevel(AIAct)
oGovernanceroles(ChapterIVGDPR)
oDistributiondate(5.2GDPR)
oExistingdocumentation
Informationonprocess
oDescriptionofintendedpurposes,uses,contextandrole/serviceprovided(Article5.1.b,5.2and24.1GDPR)
oStakeholderinvolvement
oOrganizationalcontext
oHumanrole/s(Article22GDPR)
Informationontraining/validationdata
oDatasources/collectionmethodology(Articles5and9GDPR)
oDatatypesandcharacteristics(Article5.1.a,bGDPR)
oPrivacybyDesign(Article25GDPR)
oDatasheetsforDatasets(Article5.1.a,bGDPR)
Informationonthemodel
oMethod/susedandjustification
oSimplifiedoutput/s
oDecisionvariables
oObjectivefunction/s(Article5.1.dGDPR)
Informationonbiasandimpacts(inlab/operationalsettings)
oMetrics(Articles5.1.aand5.1.bGDPR)
oProtectedcategories(Articles13.1.e,14.1.eand35.9GDPR)
oImpactratespercategoryandprofilebeforeandaftereachtechnicalintervention(Article5.1.dGDPR)
oAuditabilityandauditscore(Articles5,22,24and25GDPR)
Informationonredress,ifrelevant:
oExplainabilityprofiling(Recital71GDPR)
oRedressorreview(Articles13.2.f,14.2.gand15GDPR)
oRedressmetrics
AIAuditing-ProposalforAIleaflets
10
Definitions
Systemnameandversion:ifany
Leafletversion:specifyifitisthefirstinstance.Leafletsshouldberevisitedwithaanymajorsystemchange,orearlierifunsupervisedmachinelearningisused.
Systemownerandsupplier/sdata:includingcontactdetailsandnameoftheteaminchargeofproduct
development,andanyexternalorganisationorpersonthathasbeencontractedtodevelopthewholeorpartsoforthealgorithmictool.
Suppliers’role:descriptionoftheroletheexternalsupplierhadinthedevelopmentofthealgorithmictool.Ifmultipleorganisationshavebeencontractedortherearemultiplecompaniesinvolvedinthedeliveryofthetool,theserelationshipsshouldbedescribedclearlyandconcisely.
Risklevel:asdefinedinAIActorotherrelevantlegislation.Ifasystemhasdifferentrisklevelsindifferentregulations,thisshouldbespecified.
Governanceroles:identificationofcontroller/s,processor/s,DPO/s,auditor/sDistributiondate:thedatethesystemstartedtooperate
Existingdocumentation:forinstancedatareusepermissions/authorizations,datasharingagreements,ethics/IRBapproval,DPAapproval,algorithmicaudit,proportionalityassessment,impactassessment,transparencyreport,academicpaper/s,GitHub/publicrepositories,etc.Informationshouldbeprovidedonwhetherthesedocumentsexist,wheretheycanbefound(iftheyarepublic)andwhois/wasresponsiblefordevelopingthem.
Descriptionofthepurposeandrole/serviceprovidedbythealgorithm,including,
-Organizationalcontext(howthealgorithmictoolisintegratedintothedecision-makingprocessandwhatinfluencethealgorithmictoolhasonit)
-Whetheritisanewrole/serviceortheautomationofanexistingrole/service
-Purposeofthealgorithmictool
-Descriptionofitsuse
-Excludeduses(potentialusesthatthetoolwasnotdesignedfortohelpavoidmisconceptionsaboutthescopeandpurposeofthetool)
-Benefits
Stakeholderinvolvement:descriptionofanystakeholderconsultationprocessesperformed,includingUXstudies
Humanrole/s:descriptionofhowsystemoutputsarehandled.Ifhumansareinvolved,descriptionoftheirroleandproceduretoapprove/rejectalgorithmicdecisions,statisticsonimpactofhumaninvolvement
Datasources/collectionmethodology:including,
-Legalbasisforaccess
-ListofsourcesandlinktoGDPRcompliancepolicies
-Timeframeandgeographicalcoverageofalldataused,includingAPIs
-Ifthedatasetsarepublic,linktotheirlocation/repositoryandsharingpolicy
-Informationonpreprocessing
-InformationonprohibitionsstatedinArticle9,GDPR
AIAuditing-ProposalforAIleaflets
11
Datatypesandcharacteristics:foreachdatasource,describedatatype(number,string,image,etc.),whetherdataispersonaland/orsensitive,andwhatinformationisincludedinthedata(age,gender,location,etc.)
PrivacybyDesign:descriptionofmeasurestakentominimize,anonymizeorotherwiseprotectpersonaldata
Datasets:name,content,formatanduseofalldatase
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 活動(dòng)策劃培訓(xùn)教程
- 洛陽(yáng)張繼剛核心素養(yǎng)培訓(xùn)
- 2024-2025學(xué)年江西省上饒市高一下學(xué)期期中考試歷史試題(解析版)
- 2026年教育心理學(xué)基礎(chǔ)測(cè)試題庫(kù)
- 室內(nèi)造景植物培訓(xùn)課件
- 2026年建筑設(shè)計(jì)師建筑結(jié)構(gòu)空間規(guī)劃專(zhuān)業(yè)題庫(kù)
- 2026年網(wǎng)絡(luò)安全分析師認(rèn)證模擬試題
- 2026年食品安全與營(yíng)養(yǎng)健康專(zhuān)題題目
- 2026年中醫(yī)經(jīng)絡(luò)理論穴位辨識(shí)與經(jīng)絡(luò)調(diào)理操作試題
- 2026年證券投資顧問(wèn)考試題庫(kù)及答案解析
- 2025年藥品效期管理制度測(cè)試卷(附答案)
- 壓力開(kāi)關(guān)校準(zhǔn)培訓(xùn)課件
- 紡織車(chē)間設(shè)計(jì)方案(3篇)
- 煤礦炸藥管理辦法
- 超聲在急診科的臨床應(yīng)用
- 幼兒園食堂工作人員培訓(xùn)計(jì)劃表
- 文學(xué)常識(shí)1000題含答案
- 2025年湖南省中考語(yǔ)文試卷真題及答案詳解(精校打印版)
- 2024-2025學(xué)年浙江省杭州市拱墅區(qū)統(tǒng)編版四年級(jí)上冊(cè)期末考試語(yǔ)文試卷(解析版)
- 丁華野教授:上卷:幼年性纖維腺瘤與葉狀腫瘤
- 足浴店老板與技師免責(zé)協(xié)議
評(píng)論
0/150
提交評(píng)論