版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
答案第=page11頁(yè),共=sectionpages22頁(yè)解密03講:不等式【練基礎(chǔ)】一、單選題1.(2022·四川·中和中學(xué)高三模擬)若SKIPIF1<0,則下列不等式一定成立的是(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】B【分析】隨便帶入一組數(shù)據(jù)即可.【詳解】取SKIPIF1<0,此時(shí)有:SKIPIF1<0故AC錯(cuò);又SKIPIF1<0,D錯(cuò);SKIPIF1<0,B正確.故選:B.2.(2022·廣東湛江·高三階段練習(xí))已知SKIPIF1<0,則下列說法正確的是(
)A.若SKIPIF1<0,則SKIPIF1<0 B.若SKIPIF1<0,則SKIPIF1<0C.若SKIPIF1<0,且SKIPIF1<0,則SKIPIF1<0 D.若SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0【答案】D【分析】根據(jù)不等式的性質(zhì)以及作差法逐項(xiàng)分析判斷.【詳解】當(dāng)SKIPIF1<0,SKIPIF1<0時(shí),SKIPIF1<0,故A錯(cuò)誤;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,故B錯(cuò)誤;∵SKIPIF1<0,SKIPIF1<0,顯然SKIPIF1<0不能得到SKIPIF1<0,例如當(dāng)SKIPIF1<0,SKIPIF1<0時(shí),SKIPIF1<0,故C錯(cuò)誤;若SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,故D正確.故選:D.3.(2021·安徽·高三階段練習(xí)(文))已知a,b>1且a≠b,下列各式中最大的是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【分析】根據(jù)給定條件結(jié)合基本不等式、不等式性質(zhì)及作差法比較作答.【詳解】因?yàn)閍,b>1,a≠b,由基本不等式得:SKIPIF1<0,由不等式性質(zhì)得:SKIPIF1<0,又SKIPIF1<0,所以SKIPIF1<0.故選:D4.(2022·重慶·高三階段練習(xí))關(guān)于SKIPIF1<0的不等式SKIPIF1<0恒成立,則實(shí)數(shù)SKIPIF1<0的取值范圍為(
).A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【分析】根據(jù)題意,分兩種情況討論,當(dāng)SKIPIF1<0時(shí),不等式顯然成立;當(dāng)SKIPIF1<0時(shí),根據(jù)二次函數(shù)圖像的性質(zhì)得到SKIPIF1<0的取值范圍,綜合兩種情況即可得到答案.【詳解】當(dāng)SKIPIF1<0時(shí),原不等式為SKIPIF1<0,不等式恒成立,當(dāng)SKIPIF1<0時(shí),若一元二次不等式SKIPIF1<0恒成立,則有SKIPIF1<0,解得SKIPIF1<0,此時(shí)不等式恒成立,綜上所述:SKIPIF1<0的取值范圍為SKIPIF1<0.故選:C.5.(2023·全國(guó)·高三專題練習(xí))對(duì)任意不相等的兩個(gè)正實(shí)數(shù)SKIPIF1<0,SKIPIF1<0,滿足SKIPIF1<0的函數(shù)是(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】B【分析】將題目要求依次代入四個(gè)選項(xiàng)計(jì)算即可得到結(jié)果【詳解】對(duì)于選項(xiàng)A,SKIPIF1<0,SKIPIF1<0,所以A錯(cuò)誤;對(duì)于選項(xiàng)B,SKIPIF1<0,SKIPIF1<0因?yàn)镾KIPIF1<0為增函數(shù)且SKIPIF1<0所以SKIPIF1<0所以SKIPIF1<0所以SKIPIF1<0,符合題意,B正確;對(duì)于選項(xiàng)C,SKIPIF1<0SKIPIF1<0SKIPIF1<0,所以C錯(cuò)誤;對(duì)于選項(xiàng)D,SKIPIF1<0,因?yàn)镾KIPIF1<0,所以SKIPIF1<0所以D錯(cuò)誤;故選:B6.(2023·內(nèi)蒙古赤峰·高三階段練習(xí)(文))已知實(shí)數(shù)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則下列說法中,正確的是(
).A.SKIPIF1<0 B.存在a,b,使得SKIPIF1<0C.SKIPIF1<0 D.存在a,b,使得直線SKIPIF1<0與圓SKIPIF1<0相切【答案】C【分析】巧用“1”驗(yàn)證選項(xiàng)A,基本不等式驗(yàn)證選項(xiàng)B,基本不等式加對(duì)數(shù)運(yùn)算性質(zhì)驗(yàn)證選項(xiàng)C,點(diǎn)到直線的距離公式加基本不等式驗(yàn)證選項(xiàng)D.【詳解】SKIPIF1<0,故A錯(cuò)誤;SKIPIF1<0,故B錯(cuò)誤;SKIPIF1<0,故選項(xiàng)C正確;圓心SKIPIF1<0到直線SKIPIF1<0的距離SKIPIF1<0由SKIPIF1<0,故SKIPIF1<0,故D錯(cuò)誤.故選:C.7.(2023·四川資陽(yáng)·模擬預(yù)測(cè)(文))已知a,b均為正數(shù),且SKIPIF1<0,則SKIPIF1<0的最小值為(
)A.8 B.16 C.24 D.32【答案】B【分析】根據(jù)“1”的變形技巧及均值不等式求解即可.【詳解】因?yàn)閍,b均為正數(shù),且SKIPIF1<0,所以SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時(shí),即SKIPIF1<0時(shí)等號(hào)成立,故選:B8.(2022·山東聊城·高一期中)已知SKIPIF1<0,SKIPIF1<0,且SKIPIF1<0,不等式SKIPIF1<0恒成立,則正實(shí)數(shù)SKIPIF1<0的取值范圍是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【分析】由題設(shè)SKIPIF1<0,利用基本不等式求SKIPIF1<0取值范圍(注意等號(hào)成立條件),再應(yīng)用二次函數(shù)性質(zhì)及恒成立確定正實(shí)數(shù)m的范圍.【詳解】由題設(shè)SKIPIF1<0恒成立,而SKIPIF1<0,又SKIPIF1<0僅當(dāng)SKIPIF1<0時(shí)等號(hào)成立,所以SKIPIF1<0,且等號(hào)成立條件同上,故SKIPIF1<0.故選:B二、多選題9.(2022·福建·莆田一中高三階段練習(xí))已知關(guān)于SKIPIF1<0的不等式SKIPIF1<0解集為SKIPIF1<0,則(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.不等式SKIPIF1<0的解集為SKIPIF1<0【答案】BCD【分析】對(duì)于選項(xiàng)A,可以通過分析SKIPIF1<0解集為SKIPIF1<0,從而分析出不等式所對(duì)應(yīng)的二次函數(shù)SKIPIF1<0的圖像開口向上;對(duì)于選項(xiàng)B,通過韋達(dá)定理SKIPIF1<0,SKIPIF1<0,從而分析出SKIPIF1<0,SKIPIF1<0,SKIPIF1<0的正負(fù);對(duì)于選項(xiàng)C,將SKIPIF1<0代入SKIPIF1<0,即能分析SKIPIF1<0的正負(fù);對(duì)于選項(xiàng)D,將SKIPIF1<0,SKIPIF1<0代入SKIPIF1<0,得到SKIPIF1<0,其中SKIPIF1<0,從而解出不等式.【詳解】SKIPIF1<0SKIPIF1<0解集為SKIPIF1<0SKIPIF1<0SKIPIF1<0,且SKIPIF1<0,SKIPIF1<0,故選項(xiàng)A錯(cuò)誤;SKIPIF1<0SKIPIF1<0,SKIPIF1<0,SKIPIF1<0SKIPIF1<0,故選項(xiàng)B正確;SKIPIF1<0SKIPIF1<0解集為SKIPIF1<0SKIPIF1<0將SKIPIF1<0代入SKIPIF1<0,SKIPIF1<0SKIPIF1<0,故選項(xiàng)C正確;SKIPIF1<0SKIPIF1<0,SKIPIF1<0,SKIPIF1<0不等式SKIPIF1<0可以化簡(jiǎn)為SKIPIF1<0,而SKIPIF1<0SKIPIF1<0SKIPIF1<0,故選項(xiàng)D正確故選:BCD10.(2022·湖北·咸豐春暉學(xué)校高三階段練習(xí))若SKIPIF1<0,則下列不等式中一定不成立的是(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】AD【分析】根據(jù)不等式的性質(zhì)及作差法判斷即可AD,根據(jù)特殊值法可判斷BC.【詳解】對(duì)于A,SKIPIF1<0SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,故選項(xiàng)A一定不成立;對(duì)于B,不妨取SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,故選項(xiàng)B可能成立;對(duì)于C,不妨取SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,故選項(xiàng)C可能成立;對(duì)于D,SKIPIF1<0,故SKIPIF1<0,故選項(xiàng)D一定不成立;故選:AD.11.(2022·安徽·合肥一中高三階段練習(xí))不等式SKIPIF1<0對(duì)任意SKIPIF1<0恒成立,則下列關(guān)系正確的是(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】ACD【分析】將題設(shè)不等式化為標(biāo)準(zhǔn)的一元二次不等式,由其恒成立得SKIPIF1<0,再結(jié)合不等式的性質(zhì)變形后判斷ACD選項(xiàng)即可,對(duì)于B,則舉反例排除.【詳解】對(duì)于A,將SKIPIF1<0整理為SKIPIF1<0,因?yàn)镾KIPIF1<0對(duì)任意SKIPIF1<0恒成立,所以SKIPIF1<0,即SKIPIF1<0,整理得SKIPIF1<0,故A正確;對(duì)于B,令SKIPIF1<0,則SKIPIF1<0,滿足題意,故B錯(cuò)誤;對(duì)于C,由A知SKIPIF1<0,即SKIPIF1<0,故C正確;對(duì)于D,SKIPIF1<0,故D正確.故選:ACD.12.(2022·山東聊城·高三模擬)設(shè)SKIPIF1<0,SKIPIF1<0,且SKIPIF1<0,則下列說法中正確的是(
)A.SKIPIF1<0有最小值SKIPIF1<0 B.SKIPIF1<0有最大值SKIPIF1<0C.SKIPIF1<0有最大值SKIPIF1<0 D.SKIPIF1<0有最小值SKIPIF1<0【答案】AD【分析】由已知結(jié)合基本不等式分別檢驗(yàn)計(jì)算即可判斷各選項(xiàng)正確與否.【詳解】解:由于SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,又SKIPIF1<0得SKIPIF1<0所以SKIPIF1<0,則SKIPIF1<0,解得SKIPIF1<0(舍)或SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時(shí),SKIPIF1<0有最小值SKIPIF1<0,故A正確,B不正確;由SKIPIF1<0,又SKIPIF1<0得SKIPIF1<0所以SKIPIF1<0,則SKIPIF1<0,解得SKIPIF1<0(舍)或SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時(shí),SKIPIF1<0有最小值SKIPIF1<0,故C不正確,D正確;故選:AD.三、填空題13.(2022·廣東·廣州市番禺區(qū)大龍中學(xué)高三階段練習(xí))若SKIPIF1<0則SKIPIF1<0的最小值是__________.【答案】SKIPIF1<0##SKIPIF1<0【分析】根據(jù)SKIPIF1<0,然后結(jié)合基本不等式,即可得到結(jié)果.【詳解】因?yàn)镾KIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0,即SKIPIF1<0時(shí),等號(hào)成立即SKIPIF1<0的最小值為SKIPIF1<0故答案為:SKIPIF1<014.(2022·河北·高三階段練習(xí))若關(guān)于SKIPIF1<0的不等式SKIPIF1<0在區(qū)間SKIPIF1<0內(nèi)有解,則實(shí)數(shù)SKIPIF1<0的取值范圍是______.【答案】SKIPIF1<0【分析】將參數(shù)SKIPIF1<0分離,轉(zhuǎn)化為二次函數(shù)求指定區(qū)間最值問題.【詳解】不等式SKIPIF1<0在區(qū)間SKIPIF1<0內(nèi)有解,即不等式SKIPIF1<0在區(qū)間SKIPIF1<0內(nèi)有解,設(shè)SKIPIF1<0,SKIPIF1<0即SKIPIF1<0,即SKIPIF1<0不大于函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上的最大值,函數(shù)SKIPIF1<0的圖象為開口向上,對(duì)稱軸是直線SKIPIF1<0的拋物線,∴SKIPIF1<0,SKIPIF1<0,在區(qū)間SKIPIF1<0上單調(diào)遞減,在區(qū)間SKIPIF1<0上單調(diào)遞增,∵SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,即實(shí)數(shù)SKIPIF1<0的取值范圍為SKIPIF1<0.故答案為:SKIPIF1<0.15.(2022·江蘇·高三課時(shí)練習(xí))在SKIPIF1<0中,設(shè)邊SKIPIF1<0所對(duì)的角為SKIPIF1<0,若SKIPIF1<0,則SKIPIF1<0的最大值為________.【答案】6【分析】題目考察余弦定理和基本不等式的綜合應(yīng)用,根據(jù)余弦定理寫出SKIPIF1<0之間的關(guān)系式,應(yīng)用基本不等式求最大值【詳解】根據(jù)題意,在SKIPIF1<0中,若SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,即SKIPIF1<0,又由SKIPIF1<0,則有SKIPIF1<0,即SKIPIF1<0的最大值為6.故答案為:616.(2022·山西臨汾·高三階段練習(xí))已知SKIPIF1<0,若SKIPIF1<0是SKIPIF1<0與SKIPIF1<0的等比中項(xiàng),則SKIPIF1<0的最小值為__________.【答案】SKIPIF1<0【分析】由SKIPIF1<0是SKIPIF1<0與SKIPIF1<0的等比中項(xiàng),得到SKIPIF1<0,再結(jié)合“1”的代換,利用基本不等式求解.【詳解】解:由題意得SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0,又SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0時(shí)等號(hào)成立.故SKIPIF1<0的最小值為SKIPIF1<0.故答案為:SKIPIF1<0四、解答題17.(2022·陜西·興平市南郊高級(jí)中學(xué)高三階段練習(xí))已知函數(shù)SKIPIF1<0,SKIPIF1<0的解集為SKIPIF1<0或SKIPIF1<0.(1)求實(shí)數(shù)SKIPIF1<0、SKIPIF1<0的值;(2)若SKIPIF1<0時(shí),求函數(shù)SKIPIF1<0的最大值.【答案】(1)SKIPIF1<0;(2)SKIPIF1<0.【分析】(1)不等式解集區(qū)間的端點(diǎn)是方程的解,將SKIPIF1<0分別帶入等于0;(2)將SKIPIF1<0整理成耐克函數(shù)的形式運(yùn)用基本不等式可以求出最大值.【詳解】(1)因?yàn)殛P(guān)于SKIPIF1<0的不等式SKIPIF1<0的解集為SKIPIF1<0或SKIPIF1<0,所以,SKIPIF1<0、SKIPIF1<0是方程SKIPIF1<0的兩個(gè)根,所以,SKIPIF1<0,解得SKIPIF1<0.(2)由題意知SKIPIF1<0,因?yàn)镾KIPIF1<0,所以SKIPIF1<0由基本不等式可得:SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時(shí),即SKIPIF1<0時(shí),等號(hào)成立。故函數(shù)SKIPIF1<0的最大值為SKIPIF1<0.18.(2022·江蘇·句容碧桂園學(xué)校高三開學(xué)考試)已知不等式SKIPIF1<0的解集為SKIPIF1<0,不等式SKIPIF1<0的解集為SKIPIF1<0.(1)若SKIPIF1<0,不等式SKIPIF1<0的解集為SKIPIF1<0,求不等式SKIPIF1<0的解集;(2)SKIPIF1<0,SKIPIF1<0,求a的取值范圍.【答案】(1)SKIPIF1<0;(2)SKIPIF1<0【分析】(1)首先求出SKIPIF1<0,然后求出SKIPIF1<0,然后可得答案;(2)分類討論,SKIPIF1<0和SKIPIF1<0,后者結(jié)合二次函數(shù)性質(zhì)可解.【詳解】(1)SKIPIF1<0,當(dāng)SKIPIF1<0=1時(shí),SKIPIF1<0,∴SKIPIF1<0,因?yàn)椴坏仁絊KIPIF1<0的解集為SKIPIF1<0,所以-1,2是方程SKIPIF1<0的兩個(gè)根,SKIPIF1<0,解得m=-1,n=-2,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0;(2)當(dāng)a=0時(shí),-6<0恒成立,符合題意;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,得SKIPIF1<0,得-24<a<0;綜上,a的取值范圍是SKIPIF1<0.19.(2020·河南新鄉(xiāng)·高二期中(文))(1)比較SKIPIF1<0與SKIPIF1<0的大?。?)已知SKIPIF1<0,SKIPIF1<0,且SKIPIF1<0,證明:SKIPIF1<0【答案】(1)SKIPIF1<0;(2)證明見解析.【解析】(1)平方后可比較它們的大小.(2)利用基本不等式可求證明不等式成立.【詳解】(1)因?yàn)镾KIPIF1<0,所以SKIPIF1<0,因?yàn)镾KIPIF1<0,SKIPIF1<0,所以SKIPIF1<0.(2)證明:因?yàn)镾KIPIF1<0(當(dāng)且僅當(dāng)SKIPIF1<0時(shí),等號(hào)成立),SKIPIF1<0(當(dāng)且僅當(dāng)SKIPIF1<0時(shí),等號(hào)成立),所以SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時(shí),等號(hào)成立,因?yàn)镾KIPIF1<0,所以SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時(shí),等號(hào)成立,所以SKIPIF1<0.【點(diǎn)睛】方法點(diǎn)睛:(1)不等式的大小比較,可利用作差法或作商法,前者需要定號(hào),后者需要和1比較大小且需注意代數(shù)式的符號(hào).(2)利用基本不等式證明不等式,注意將目標(biāo)代數(shù)式配湊成與已知條件相關(guān)的新的代數(shù)式.20.(2021·江西·高二階段練習(xí)(理))設(shè)函數(shù)SKIPIF1<0.(1)當(dāng)SKIPIF1<0時(shí),求關(guān)于SKIPIF1<0的不等式SKIPIF1<0的解集;(2)若SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),不等式SKIPIF1<0恒成立,求實(shí)數(shù)SKIPIF1<0的取值范圍.【答案】(1)答案見解析;(2)SKIPIF1<0【分析】(1)分情況討論二次不等式的解集;(2)分離參數(shù),構(gòu)造函數(shù),利用函數(shù)的最值解決不等式恒成立問題.【詳解】(1)SKIPIF1<0,即SKIPIF1<0若SKIPIF1<0,原不等式可化為SKIPIF1<0,解得SKIPIF1<0;若SKIPIF1<0,則不等式即為SKIPIF1<0,若SKIPIF1<0,原不等式可化為SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0;若SKIPIF1<0,原不等式可化為SKIPIF1<0,其解得情況應(yīng)由SKIPIF1<0與SKIPIF1<0的大小關(guān)系確定,當(dāng)SKIPIF1<0時(shí),解得SKIPIF1<0;當(dāng)SKIPIF1<0時(shí),解得SKIPIF1<0;當(dāng)SKIPIF1<0時(shí),解得SKIPIF1<0.綜上,當(dāng)SKIPIF1<0時(shí),解集為SKIPIF1<0;當(dāng)SKIPIF1<0時(shí),解集為SKIPIF1<0或SKIPIF1<0;當(dāng)SKIPIF1<0時(shí),解集為SKIPIF1<0;當(dāng)SKIPIF1<0時(shí),解集為SKIPIF1<0;當(dāng)SKIPIF1<0時(shí),解集為SKIPIF1<0.(2)由SKIPIF1<0得SKIPIF1<0,SKIPIF1<0SKIPIF1<0,SKIPIF1<0,SKIPIF1<0在SKIPIF1<0上恒成立,即SKIPIF1<0在SKIPIF1<0上恒成立,令SKIPIF1<0,則只需SKIPIF1<0又SKIPIF1<0SKIPIF1<0SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時(shí)等式成立,SKIPIF1<0的取值范圍是SKIPIF1<0.21.(2023·廣東·惠來(lái)縣第一中學(xué)高三階段練習(xí))已知實(shí)數(shù)SKIPIF1<0,SKIPIF1<0,(1)若SKIPIF1<0,求SKIPIF1<0的最小值.(2)若SKIPIF1<0,求SKIPIF1<0的最大值與SKIPIF1<0的最小值;(3)求SKIPIF1<0的最大值,并求此時(shí)x的值;【答案】(1)9;(2)2,2;(3)當(dāng)SKIPIF1<0時(shí),SKIPIF1<0【分析】(1)根據(jù)系數(shù)“1”的妙用,結(jié)合基本不等式,即可得到結(jié)果;(2)直接根據(jù)基本不等式即可得到結(jié)果;(3)將原式化為SKIPIF1<0,結(jié)合基本不等式即可得到結(jié)果.【詳解】(1)由SKIPIF1<0=SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時(shí)等號(hào)成立所以SKIPIF1<0的最小值為SKIPIF1<0(2)因?yàn)镾KIPIF1<0,又因?yàn)镾KIPIF1<0,所以SKIPIF1<0,解得SKIPIF1<0,因?yàn)镾KIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時(shí)等號(hào)成立,所以2xy最大值為2;因?yàn)镾KIPIF1<0,所以SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時(shí)等號(hào)成立,所以SKIPIF1<0,所以SKIPIF1<0最小值為2.(3)SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時(shí),SKIPIF1<022.(2022·浙江·杭十四中高三專練)已知函數(shù)SKIPIF1<0.(1)當(dāng)SKIPIF1<0時(shí),解關(guān)于SKIPIF1<0的不等式SKIPIF1<0.(2)不等式SKIPIF1<0對(duì)任意SKIPIF1<0恒成立,求實(shí)數(shù)SKIPIF1<0的取值范圍.【答案】(1)答案見解析;(2)SKIPIF1<0【分析】(1)根據(jù)題意,SKIPIF1<0等價(jià)于SKIPIF1<0,進(jìn)而分SKIPIF1<0,SKIPIF1<0,SKIPIF1<0三種情況討論求解;(2)由題知SKIPIF1<0對(duì)任意SKIPIF1<0恒成立,進(jìn)而結(jié)合基本不等式求解即可.【詳解】(1)解:SKIPIF1<0等價(jià)于SKIPIF1<0,所以,SKIPIF1<0等價(jià)于SKIPIF1<0,因?yàn)镾KIPIF1<0,所以,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0的解集為SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0的解集為SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0的解集為SKIPIF1<0,綜上,當(dāng)SKIPIF1<0時(shí)SKIPIF1<0的解集為SKIPIF1<0;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0的解集為SKIPIF1<0;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0的解集為SKIPIF1<0.(2)解:因?yàn)椴坏仁絊KIPIF1<0對(duì)任意SKIPIF1<0恒成立,所以SKIPIF1<0對(duì)任意SKIPIF1<0恒成立,即SKIPIF1<0對(duì)任意SKIPIF1<0恒成立,因?yàn)镾KIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0對(duì)任意SKIPIF1<0恒成立,因?yàn)镾KIPIF1<0SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0時(shí)等號(hào)成立,所以,SKIPIF1<0,即實(shí)數(shù)SKIPIF1<0的取值范圍為SKIPIF1<0【提能力】一、單選題1.(2022·浙江·鎮(zhèn)海中學(xué)高三期中)已知SKIPIF1<0,則(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】D【分析】A令SKIPIF1<0即可判斷;B、C應(yīng)用作差法判斷大小關(guān)系;D利用基本不等式,注意等號(hào)成立條件判斷即可.【詳解】A:當(dāng)SKIPIF1<0時(shí)SKIPIF1<0,錯(cuò)誤;B:SKIPIF1<0,而SKIPIF1<0,故SKIPIF1<0,錯(cuò)誤;C:SKIPIF1<0,而SKIPIF1<0,若SKIPIF1<0時(shí)SKIPIF1<0,錯(cuò)誤;D:SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時(shí)等號(hào)成立,而SKIPIF1<0,故SKIPIF1<0,正確.故選:D2.(2022·天津市第七中學(xué)高三期中)若SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,SKIPIF1<0的大小關(guān)系是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【分析】根據(jù)SKIPIF1<0,因此要比較SKIPIF1<0,SKIPIF1<0的大小,作差,通分,利用對(duì)數(shù)的運(yùn)算性質(zhì),即可求得SKIPIF1<0,SKIPIF1<0的大??;利用對(duì)數(shù)函數(shù)SKIPIF1<0的單調(diào)性,可知SKIPIF1<0,然后利用不等式的可乘性,即可得出SKIPIF1<0,SKIPIF1<0的大小.【詳解】解:SKIPIF1<0,∴SKIPIF1<0,而SKIPIF1<0,∴SKIPIF1<0,即SKIPIF1<0,因此SKIPIF1<0.故選:C.3.(2022·山東聊城一中高三期中)對(duì)于實(shí)數(shù)a,b,c,下列命題中正確的是(
)A.若SKIPIF1<0,則SKIPIF1<0B.若SKIPIF1<0,則SKIPIF1<0C.若SKIPIF1<0,則SKIPIF1<0D.若SKIPIF1<0,則SKIPIF1<0【答案】D【分析】由不等式性質(zhì)判斷各選項(xiàng)正誤即可.【詳解】對(duì)于選項(xiàng)A,注意到若SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0.故A錯(cuò)誤.對(duì)于選項(xiàng)B,設(shè)SKIPIF1<0,得SKIPIF1<0,解得SKIPIF1<0.又SKIPIF1<0,SKIPIF1<0,得SKIPIF1<0.故B錯(cuò)誤.對(duì)于C選項(xiàng),因SKIPIF1<0,則SKIPIF1<0,故C錯(cuò)誤.對(duì)于D選項(xiàng),SKIPIF1<0,因SKIPIF1<0,則SKIPIF1<0,故D正確.故選:D4.(2022·江蘇泰州·高三期中)對(duì)任意正數(shù)x,y,不等式x(x+y)≤a(x2+y2)恒成立,則實(shí)數(shù)a的最小值為()A.SKIPIF1<0 B.SKIPIF1<0﹣1 C.SKIPIF1<0+1 D.SKIPIF1<0【答案】D【分析】將已知不等式轉(zhuǎn)化為(a﹣1)SKIPIF1<0﹣SKIPIF1<0+a≥0對(duì)于一切正數(shù)x,y恒成立,令t=SKIPIF1<0,f(t)=(a﹣1)t2﹣t+a,由二次函數(shù)的圖象與性質(zhì)可得關(guān)于a的不等式組,解之即可得答案.【詳解】∵x>0,y>0,∴x(x+y)≤a(x2+y2)?xy≤(a﹣1)x2+ay2?SKIPIF1<0,令SKIPIF1<0,f(t)=(a﹣1)t2﹣t+a,依題意,SKIPIF1<0,即SKIPIF1<0,解得a≥SKIPIF1<0.∴實(shí)數(shù)a的最小值為SKIPIF1<0.故選:D.5.(2022·江西贛州·二模(理))在等差數(shù)列SKIPIF1<0和等比數(shù)列SKIPIF1<0中,有SKIPIF1<0,且SKIPIF1<0,則下列關(guān)系式中正確的是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【分析】利用基本不等式可判斷兩者的大小.【詳解】設(shè)等比數(shù)列的公比為SKIPIF1<0,則SKIPIF1<0,故SKIPIF1<0,因?yàn)镾KIPIF1<0為等差數(shù)列,故SKIPIF1<0,因?yàn)镾KIPIF1<0為等差數(shù)列,故SKIPIF1<0,故SKIPIF1<0,結(jié)合題設(shè)條件有SKIPIF1<0,由基本不等式可得SKIPIF1<0,故SKIPIF1<0,而SKIPIF1<0,故SKIPIF1<0,故選:B.6.(2022·陜西·西安市第三中學(xué)高三階段練習(xí))已知正數(shù)SKIPIF1<0滿足SKIPIF1<0,則SKIPIF1<0的最小值為(
)A.1 B.SKIPIF1<0 C.2 D.SKIPIF1<0【答案】B【分析】用SKIPIF1<0來(lái)表示SKIPIF1<0得SKIPIF1<0,代入得SKIPIF1<0,再利用基本不等式即可求出最小值.【詳解】SKIPIF1<0,SKIPIF1<0,則有SKIPIF1<0,SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0,即SKIPIF1<0時(shí)等號(hào)成立,此時(shí)SKIPIF1<0,故選:B.7.(2022·貴州貴陽(yáng)·高三階段練習(xí)(理))已知函數(shù)SKIPIF1<0的圖像恒過一點(diǎn)P,且點(diǎn)P在直線SKIPIF1<0的圖像上,則SKIPIF1<0的最小值為(
)A.4 B.6 C.7 D.8【答案】D【分析】根據(jù)指數(shù)函數(shù)的性質(zhì),求定點(diǎn),代入直線方程,利用基本不等式“1”的妙用,可得答案.【詳解】由函數(shù)SKIPIF1<0,可得SKIPIF1<0,則SKIPIF1<0,整理可得SKIPIF1<0,故SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0,即SKIPIF1<0時(shí),等號(hào)成立,故選:D.8.(2022·山東省青島第五十八中學(xué)高三期中)已知對(duì)任意SKIPIF1<0,且SKIPIF1<0,SKIPIF1<0恒成立,則SKIPIF1<0的取值范圍是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【分析】利用已知等式可得SKIPIF1<0,根據(jù)SKIPIF1<0,利用基本不等式可求得SKIPIF1<0,由此可得結(jié)果.【詳解】由SKIPIF1<0得:SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0SKIPIF1<0(當(dāng)且僅當(dāng)SKIPIF1<0時(shí)取等號(hào)),SKIPIF1<0當(dāng)SKIPIF1<0恒成立時(shí),SKIPIF1<0.故選:D.二、多選題9.(2022·廣東·廣州市第九十七中學(xué)高三階段練習(xí))下列幾種說法中,正確的是(
)A.“SKIPIF1<0”是“SKIPIF1<0”的充要條件B.命題“SKIPIF1<0,SKIPIF1<0”的否定是“SKIPIF1<0,SKIPIF1<0”C.若不等式SKIPIF1<0的解集是SKIPIF1<0,則SKIPIF1<0的解集是SKIPIF1<0D.“SKIPIF1<0”是“不等式SKIPIF1<0對(duì)一切SKIPIF1<0都成立”的充要條件【答案】BCD【分析】根據(jù)命題的推斷關(guān)系判斷是否是充要條件,含有量詞的命題的否定先改量詞再否定結(jié)論,對(duì)選項(xiàng)中的命題進(jìn)行計(jì)算和化簡(jiǎn),判斷選項(xiàng)的正誤.【詳解】對(duì)于A,SKIPIF1<0即SKIPIF1<0或SKIPIF1<0,所以“SKIPIF1<0”能推斷出“SKIPIF1<0”,“SKIPIF1<0”不能推出“SKIPIF1<0”,“SKIPIF1<0”是“SKIPIF1<0”的充分不必要條件,A錯(cuò)誤.對(duì)于B,含有量詞的命題的否定先改量詞再否定結(jié)論,“SKIPIF1<0,SKIPIF1<0”的否定是“SKIPIF1<0,SKIPIF1<0”,B正確.對(duì)于C,不等式SKIPIF1<0的解集是SKIPIF1<0,則SKIPIF1<0,得SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0即SKIPIF1<0,解集為SKIPIF1<0,C正確.對(duì)于D,若SKIPIF1<0,不等式可化為SKIPIF1<0對(duì)一切x都成立,合題意;若SKIPIF1<0,因?yàn)镾KIPIF1<0對(duì)一切x都成立,所以SKIPIF1<0,解得SKIPIF1<0,綜上,SKIPIF1<0,所以D正確.故選:BCD.10.(2022·湖南經(jīng)緯實(shí)驗(yàn)學(xué)校高三期中)以下命題為真命題的是(
)A.不等式SKIPIF1<0的解集為SKIPIF1<0.B.方程SKIPIF1<0有異號(hào)根的充要條件是SKIPIF1<0C.若SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0D.“SKIPIF1<0”是“SKIPIF1<0”的充分不必要條件【答案】BC【分析】解二次不等式判斷A,由二次方程根的分布判斷B,由不等式的性質(zhì)判斷C,由充分必要條件的定義判斷D.【詳解】SKIPIF1<0恒成立,不等式SKIPIF1<0的解集為R,A錯(cuò);方程SKIPIF1<0的兩根異號(hào),則SKIPIF1<0(此時(shí)SKIPIF1<0),反之若SKIPIF1<0,則SKIPIF1<0,又SKIPIF1<0,SKIPIF1<0異號(hào),B正確;SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0,C正確;SKIPIF1<0時(shí),SKIPIF1<0不一定成立,如SKIPIF1<0,但SKIPIF1<0時(shí),SKIPIF1<0一定成立,“SKIPIF1<0”是“SKIPIF1<0”的必要不充分條件,D錯(cuò).故選:BC.11.(2022·重慶十八中高三階段練習(xí))不等式SKIPIF1<0對(duì)任意SKIPIF1<0恒成立,則(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】ACD【分析】將題設(shè)不等式化為標(biāo)準(zhǔn)的一元二次不等式,由其恒成立得SKIPIF1<0,再結(jié)合不等式的性質(zhì)變形后判斷ACD選項(xiàng)即可,對(duì)于B,則舉反例排除.【詳解】對(duì)于A,將SKIPIF1<0整理為SKIPIF1<0,因?yàn)镾KIPIF1<0對(duì)任意SKIPIF1<0恒成立,所以SKIPIF1<0,即SKIPIF1<0,整理得SKIPIF1<0,故A正確;對(duì)于B,令SKIPIF1<0,則SKIPIF1<0,滿足題意,故B錯(cuò)誤;對(duì)于C,由A知SKIPIF1<0,即SKIPIF1<0,故C正確;對(duì)于D,SKIPIF1<0,故D正確.故選:ACD.12.(2022·遼寧·東北育才學(xué)校高三階段練習(xí))已知正實(shí)數(shù)SKIPIF1<0,滿足SKIPIF1<0,則(
)A.SKIPIF1<0的最大值為1 B.SKIPIF1<0的最小值為4C.SKIPIF1<0的最小值為1 D.SKIPIF1<0的最小值為18【答案】AB【分析】根據(jù)基本不等式得SKIPIF1<0,再解不等式可判斷A;根據(jù)SKIPIF1<0得SKIPIF1<0,再解不等式可判斷B;由題知SKIPIF1<0,進(jìn)而代換,結(jié)合基本不等式求解判斷CD.【詳解】解:因?yàn)镾KIPIF1<0,SKIPIF1<0,可得SKIPIF1<0,所以SKIPIF1<0,解得SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時(shí),取等號(hào),即SKIPIF1<0的最大值為1,故A正確;因?yàn)镾KIPIF1<0,所以SKIPIF1<0,解得SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時(shí),取等號(hào),即SKIPIF1<0的最小值為4,故B正確;由SKIPIF1<0可解得SKIPIF1<0,故SKIPIF1<0所以SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0,取等號(hào),即SKIPIF1<0,SKIPIF1<0,與SKIPIF1<0矛盾,故C錯(cuò)誤;SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0,取等號(hào),即SKIPIF1<0,SKIPIF1<0,與SKIPIF1<0矛盾,故D錯(cuò)誤;故選:AB三、填空題13.(2022·福建泉州·高三期中)已知函數(shù)SKIPIF1<0與函數(shù)SKIPIF1<0有公共點(diǎn),則SKIPIF1<0的最小值為______.【答案】SKIPIF1<0【分析】將問題轉(zhuǎn)化為方程SKIPIF1<0有解,即SKIPIF1<0有解,設(shè)SKIPIF1<0,則SKIPIF1<0,將關(guān)于SKIPIF1<0的方程看成關(guān)于SKIPIF1<0的直線方程SKIPIF1<0,則SKIPIF1<0可視為直線上的點(diǎn)SKIPIF1<0到原點(diǎn)的距離的平方,即為原點(diǎn)到直線的距離的平方,進(jìn)而求解即可.【詳解】令SKIPIF1<0,故SKIPIF1<0SKIPIF1<0,即SKIPIF1<0故方程SKIPIF1<0有解設(shè)SKIPIF1<0,則SKIPIF1<0將關(guān)于SKIPIF1<0的方程看成關(guān)于SKIPIF1<0的直線方程SKIPIF1<0,則SKIPIF1<0可視為直線上的點(diǎn)SKIPIF1<0到原點(diǎn)的距離的平方,即為原點(diǎn)到直線的距離的平方故SKIPIF1<0當(dāng)且僅當(dāng)SKIPIF1<0時(shí)等號(hào)成立SKIPIF1<0SKIPIF1<0時(shí)能取得最小值,此時(shí)SKIPIF1<0故SKIPIF1<0的最小值為SKIPIF1<0故答案為:SKIPIF1<0.14.(2023·全國(guó)·高三專題練習(xí))若SKIPIF1<0,使SKIPIF1<0成立,則實(shí)數(shù)SKIPIF1<0的取值范圍是______________.【答案】SKIPIF1<0【分析】利用不等式的基本性質(zhì)分離參數(shù),利用函數(shù)的單調(diào)性求相應(yīng)最值即可得到結(jié)論.【詳解】由SKIPIF1<0可得,SKIPIF1<0,因?yàn)镾KIPIF1<0,所以SKIPIF1<0,根據(jù)題意,SKIPIF1<0即可,設(shè)SKIPIF1<0,易知SKIPIF1<0在SKIPIF1<0單調(diào)遞減,在SKIPIF1<0單調(diào)遞增,所以SKIPIF1<0,所以SKIPIF1<0,故答案為:SKIPIF1<015.(2022·福建省福州第十一中學(xué)高三期中)已知SKIPIF1<0,SKIPIF1<0,直線SKIPIF1<0與直線SKIPIF1<0垂直,則SKIPIF1<0的最小值是___________.【答案】SKIPIF1<0【分析】?jī)芍本€垂直說明它們的法向量互相垂直,得出SKIPIF1<0的關(guān)系式,進(jìn)而運(yùn)用基本不等式求出SKIPIF1<0的最小值.【詳解】SKIPIF1<0的法向量SKIPIF1<0SKIPIF1<0的法向量SKIPIF1<0兩直線垂直得SKIPIF1<0,即SKIPIF1<0SKIPIF1<0當(dāng)且僅當(dāng)SKIPIF1<0時(shí)取等號(hào).故答案為:SKIPIF1<0.16.(2022·安徽·合肥一六八中學(xué)高三階
溫馨提示
- 1. 本站所有資源如無(wú)特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2026屆廣東省深圳市龍崗區(qū)高三上學(xué)期期末考試歷史試題(含答案)
- 實(shí)數(shù)考試?yán)}解析及答案
- 商法機(jī)考考試題及答案
- 汽車美容保養(yǎng)試題及答案
- 水泥廠培訓(xùn)課件教學(xué)
- 2025 小學(xué)三年級(jí)科學(xué)下冊(cè)保存磁鐵防止消磁的方法課件
- 《GAT 1054.6-2017公安數(shù)據(jù)元限定詞(6)》專題研究報(bào)告
- 2026 年初中英語(yǔ)《感嘆詞》專項(xiàng)練習(xí)與答案 (100 題)
- 《GAT 488-2020道路交通事故現(xiàn)場(chǎng)勘查車載照明設(shè)備通 用技術(shù)條件》專題研究報(bào)告
- 2026年深圳中考物理電熱的計(jì)算專項(xiàng)試卷(附答案可下載)
- GB/T 4447-2025船舶與海洋技術(shù)海船起錨機(jī)和起錨絞盤
- 中考體育前家長(zhǎng)會(huì)課件
- 江蘇省南京市2024-2025學(xué)年高一上學(xué)期1月期末學(xué)情調(diào)研測(cè)試生物試題(解析版)
- 工作簡(jiǎn)歷模板
- 2024年廣東省佛山市南海區(qū)道路建設(shè)管理處招聘公益一類事業(yè)編制人員3人歷年管理單位遴選500模擬題附帶答案詳解
- 動(dòng)物輔助療法行業(yè)研究報(bào)告
- 模塊化軟件質(zhì)量保證
- 人教版七年級(jí)語(yǔ)文上冊(cè)《課內(nèi)文言文基礎(chǔ)知識(shí) 》專項(xiàng)測(cè)試卷及答案
- 【關(guān)于構(gòu)建我國(guó)個(gè)人破產(chǎn)制度的探討(論文)16000字】
- 加固專業(yè)承包合同
- 國(guó)家職業(yè)技術(shù)技能標(biāo)準(zhǔn) 5-01-05-01 中藥材種植員 人社廳發(fā)200994號(hào)
評(píng)論
0/150
提交評(píng)論