版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2025屆湖北省黃石市部分中學(xué)高三第四次模擬考試數(shù)學(xué)試卷考生請(qǐng)注意:1.答題前請(qǐng)將考場(chǎng)、試室號(hào)、座位號(hào)、考生號(hào)、姓名寫(xiě)在試卷密封線(xiàn)內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫(xiě)在試卷指定的括號(hào)內(nèi),第二部分非選擇題答案寫(xiě)在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.在中,角的對(duì)邊分別為,若.則角的大小為()A. B. C. D.2.在中,角、、的對(duì)邊分別為、、,若,,,則()A. B. C. D.3.設(shè)命題p:>1,n2>2n,則p為()A. B.C. D.4.若,則“”是“”的()A.充分不必要條件 B.必要不充分條件C.充分必要條件 D.既不充分也不必要條件5.函數(shù)的圖象如圖所示,為了得到的圖象,可將的圖象()A.向右平移個(gè)單位 B.向右平移個(gè)單位C.向左平移個(gè)單位 D.向左平移個(gè)單位6.已知三棱錐中,是等邊三角形,,則三棱錐的外接球的表面積為()A. B. C. D.7.已知雙曲線(xiàn)的一條漸近線(xiàn)與直線(xiàn)垂直,則雙曲線(xiàn)的離心率等于()A. B. C. D.8.中心在原點(diǎn),對(duì)稱(chēng)軸為坐標(biāo)軸的雙曲線(xiàn)的兩條漸近線(xiàn)與圓都相切,則雙曲線(xiàn)的離心率是()A.2或 B.2或 C.或 D.或9.某幾何體的三視圖如圖所示,則該幾何體的體積為()A. B. C. D.10.已知拋物線(xiàn):,直線(xiàn)與分別相交于點(diǎn),與的準(zhǔn)線(xiàn)相交于點(diǎn),若,則()A.3 B. C. D.11.等比數(shù)列若則()A.±6 B.6 C.-6 D.12.正三棱柱中,,是的中點(diǎn),則異面直線(xiàn)與所成的角為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知向量,,若,則______.14.函數(shù)的極大值為_(kāi)_______.15.若函數(shù),則__________;__________.16.已知為雙曲線(xiàn)的左、右焦點(diǎn),過(guò)點(diǎn)作直線(xiàn)與圓相切于點(diǎn),且與雙曲線(xiàn)的右支相交于點(diǎn),若是上的一個(gè)靠近點(diǎn)的三等分點(diǎn),且,則四邊形的面積為_(kāi)______.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知函數(shù),其中,為自然對(duì)數(shù)的底數(shù).(1)當(dāng)時(shí),求函數(shù)的極值;(2)設(shè)函數(shù)的導(dǎo)函數(shù)為,求證:函數(shù)有且僅有一個(gè)零點(diǎn).18.(12分)設(shè)函數(shù),其中是自然對(duì)數(shù)的底數(shù).(Ⅰ)若在上存在兩個(gè)極值點(diǎn),求的取值范圍;(Ⅱ)若,函數(shù)與函數(shù)的圖象交于,且線(xiàn)段的中點(diǎn)為,證明:.19.(12分)已知函數(shù).(1)當(dāng)時(shí),求的單調(diào)區(qū)間.(2)設(shè)直線(xiàn)是曲線(xiàn)的切線(xiàn),若的斜率存在最小值-2,求的值,并求取得最小斜率時(shí)切線(xiàn)的方程.(3)已知分別在,處取得極值,求證:.20.(12分)已知函數(shù).(1)若,解關(guān)于的不等式;(2)若當(dāng)時(shí),恒成立,求實(shí)數(shù)的取值范圍.21.(12分)在四棱錐中,底面為直角梯形,,,,,,,分別為,的中點(diǎn).(1)求證:.(2)若,求二面角的余弦值.22.(10分)某大學(xué)生在開(kāi)學(xué)季準(zhǔn)備銷(xiāo)售一種文具套盒進(jìn)行試創(chuàng)業(yè),在一個(gè)開(kāi)學(xué)季內(nèi),每售出1盒該產(chǎn)品獲利50元,未售出的產(chǎn)品,每盒虧損30元.根據(jù)歷史資料,得到開(kāi)學(xué)季市場(chǎng)需求量的頻率分布直方圖,如圖所示.該同學(xué)為這個(gè)開(kāi)學(xué)季進(jìn)了160盒該產(chǎn)品,以(單位:盒,)表示這個(gè)開(kāi)學(xué)季內(nèi)的市場(chǎng)需求量,(單位:元)表示這個(gè)開(kāi)學(xué)季內(nèi)經(jīng)銷(xiāo)該產(chǎn)品的利潤(rùn).(1)根據(jù)直方圖估計(jì)這個(gè)開(kāi)學(xué)季內(nèi)市場(chǎng)需求量的平均數(shù)和眾數(shù);(2)將表示為的函數(shù);(3)以需求量的頻率作為各需求量的概率,求開(kāi)學(xué)季利潤(rùn)不少于4800元的概率.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】
由正弦定理化簡(jiǎn)已知等式可得,結(jié)合,可得,結(jié)合范圍,可得,可得,即可得解的值.【詳解】解:∵,∴由正弦定理可得:,∵,∴,∵,,∴,∴.故選A.【點(diǎn)睛】本題主要考查了正弦定理在解三角形中的應(yīng)用,考查了計(jì)算能力和轉(zhuǎn)化思想,屬于基礎(chǔ)題.2、B【解析】
利用兩角差的正弦公式和邊角互化思想可求得,可得出,然后利用余弦定理求出的值,最后利用正弦定理可求出的值.【詳解】,即,即,,,得,,.由余弦定理得,由正弦定理,因此,.故選:B.【點(diǎn)睛】本題考查三角形中角的正弦值的計(jì)算,考查兩角差的正弦公式、邊角互化思想、余弦定理與正弦定理的應(yīng)用,考查運(yùn)算求解能力,屬于中等題.3、C【解析】根據(jù)命題的否定,可以寫(xiě)出:,所以選C.4、A【解析】
本題根據(jù)基本不等式,結(jié)合選項(xiàng),判斷得出充分性成立,利用“特殊值法”,通過(guò)特取的值,推出矛盾,確定必要性不成立.題目有一定難度,注重重要知識(shí)、基礎(chǔ)知識(shí)、邏輯推理能力的考查.【詳解】當(dāng)時(shí),,則當(dāng)時(shí),有,解得,充分性成立;當(dāng)時(shí),滿(mǎn)足,但此時(shí),必要性不成立,綜上所述,“”是“”的充分不必要條件.【點(diǎn)睛】易出現(xiàn)的錯(cuò)誤有,一是基本不等式掌握不熟,導(dǎo)致判斷失誤;二是不能靈活的應(yīng)用“賦值法”,通過(guò)特取的值,從假設(shè)情況下推出合理結(jié)果或矛盾結(jié)果.5、C【解析】
根據(jù)正弦型函數(shù)的圖象得到,結(jié)合圖像變換知識(shí)得到答案.【詳解】由圖象知:,∴.又時(shí)函數(shù)值最大,所以.又,∴,從而,,只需將的圖象向左平移個(gè)單位即可得到的圖象,故選C.【點(diǎn)睛】已知函數(shù)的圖象求解析式(1).(2)由函數(shù)的周期求(3)利用“五點(diǎn)法”中相對(duì)應(yīng)的特殊點(diǎn)求,一般用最高點(diǎn)或最低點(diǎn)求.6、D【解析】
根據(jù)底面為等邊三角形,取中點(diǎn),可證明平面,從而,即可證明三棱錐為正三棱錐.取底面等邊的重心為,可求得到平面的距離,畫(huà)出幾何關(guān)系,設(shè)球心為,即可由球的性質(zhì)和勾股定理求得球的半徑,進(jìn)而得球的表面積.【詳解】設(shè)為中點(diǎn),是等邊三角形,所以,又因?yàn)?,且,所以平面,則,由三線(xiàn)合一性質(zhì)可知所以三棱錐為正三棱錐,設(shè)底面等邊的重心為,可得,,所以三棱錐的外接球球心在面下方,設(shè)為,如下圖所示:由球的性質(zhì)可知,平面,且在同一直線(xiàn)上,設(shè)球的半徑為,在中,,即,解得,所以三棱錐的外接球表面積為,故選:D.【點(diǎn)睛】本題考查了三棱錐的結(jié)構(gòu)特征和相關(guān)計(jì)算,正三棱錐的外接球半徑求法,球的表面積求法,對(duì)空間想象能力要求較高,屬于中檔題.7、B【解析】由于直線(xiàn)的斜率k,所以一條漸近線(xiàn)的斜率為,即,所以,選B.8、A【解析】
根據(jù)題意,由圓的切線(xiàn)求得雙曲線(xiàn)的漸近線(xiàn)的方程,再分焦點(diǎn)在x、y軸上兩種情況討論,進(jìn)而求得雙曲線(xiàn)的離心率.【詳解】設(shè)雙曲線(xiàn)C的漸近線(xiàn)方程為y=kx,是圓的切線(xiàn)得:,得雙曲線(xiàn)的一條漸近線(xiàn)的方程為∴焦點(diǎn)在x、y軸上兩種情況討論:
①當(dāng)焦點(diǎn)在x軸上時(shí)有:②當(dāng)焦點(diǎn)在y軸上時(shí)有:∴求得雙曲線(xiàn)的離心率2或.
故選:A.【點(diǎn)睛】本小題主要考查直線(xiàn)與圓的位置關(guān)系、雙曲線(xiàn)的簡(jiǎn)單性質(zhì)等基礎(chǔ)知識(shí),考查運(yùn)算求解能力,考查數(shù)形結(jié)合思想.解題的關(guān)鍵是:由圓的切線(xiàn)求得直線(xiàn)的方程,再由雙曲線(xiàn)中漸近線(xiàn)的方程的關(guān)系建立等式,從而解出雙曲線(xiàn)的離心率的值.此題易忽視兩解得出錯(cuò)誤答案.9、D【解析】
結(jié)合三視圖可知,該幾何體的上半部分是半個(gè)圓錐,下半部分是一個(gè)底面邊長(zhǎng)為4,高為4的正三棱柱,分別求出體積即可.【詳解】由三視圖可知該幾何體的上半部分是半個(gè)圓錐,下半部分是一個(gè)底面邊長(zhǎng)為4,高為4的正三棱柱,則上半部分的半個(gè)圓錐的體積,下半部分的正三棱柱的體積,故該幾何體的體積.故選:D.【點(diǎn)睛】本題考查三視圖,考查空間幾何體的體積,考查空間想象能力與運(yùn)算求解能力,屬于中檔題.10、C【解析】
根據(jù)拋物線(xiàn)的定義以及三角形的中位線(xiàn),斜率的定義表示即可求得答案.【詳解】顯然直線(xiàn)過(guò)拋物線(xiàn)的焦點(diǎn)如圖,過(guò)A,M作準(zhǔn)線(xiàn)的垂直,垂足分別為C,D,過(guò)M作AC的垂線(xiàn),垂足為E根據(jù)拋物線(xiàn)的定義可知MD=MF,AC=AF,又AM=MN,所以M為AN的中點(diǎn),所以MD為三角形NAC的中位線(xiàn),故MD=CE=EA=AC設(shè)MF=t,則MD=t,AF=AC=2t,所以AM=3t,在直角三角形AEM中,ME=所以故選:C【點(diǎn)睛】本題考查求拋物線(xiàn)的焦點(diǎn)弦的斜率,常見(jiàn)于利用拋物線(xiàn)的定義構(gòu)建關(guān)系,屬于中檔題.11、B【解析】
根據(jù)等比中項(xiàng)性質(zhì)代入可得解,由等比數(shù)列項(xiàng)的性質(zhì)確定值即可.【詳解】由等比數(shù)列中等比中項(xiàng)性質(zhì)可知,,所以,而由等比數(shù)列性質(zhì)可知奇數(shù)項(xiàng)符號(hào)相同,所以,故選:B.【點(diǎn)睛】本題考查了等比數(shù)列中等比中項(xiàng)的簡(jiǎn)單應(yīng)用,注意項(xiàng)的符號(hào)特征,屬于基礎(chǔ)題.12、C【解析】
取中點(diǎn),連接,,根據(jù)正棱柱的結(jié)構(gòu)性質(zhì),得出//,則即為異面直線(xiàn)與所成角,求出,即可得出結(jié)果.【詳解】解:如圖,取中點(diǎn),連接,,由于正三棱柱,則底面,而底面,所以,由正三棱柱的性質(zhì)可知,為等邊三角形,所以,且,所以平面,而平面,則,則//,,∴即為異面直線(xiàn)與所成角,設(shè),則,,,則,∴.故選:C.【點(diǎn)睛】本題考查通過(guò)幾何法求異面直線(xiàn)的夾角,考查計(jì)算能力.二、填空題:本題共4小題,每小題5分,共20分。13、1【解析】
根據(jù)向量加法和減法的坐標(biāo)運(yùn)算,先分別求得與,再結(jié)合向量的模長(zhǎng)公式即可求得的值.【詳解】向量,則,則因?yàn)榧?化簡(jiǎn)可得解得故答案為:【點(diǎn)睛】本題考查了向量坐標(biāo)加法和減法的運(yùn)算,向量模長(zhǎng)的求法,屬于基礎(chǔ)題.14、【解析】
對(duì)函數(shù)求導(dǎo),根據(jù)函數(shù)單調(diào)性,即可容易求得函數(shù)的極大值.【詳解】依題意,得.所以當(dāng)時(shí),;當(dāng)時(shí),.所以當(dāng)時(shí),函數(shù)有極大值.故答案為:.【點(diǎn)睛】本題考查利用導(dǎo)數(shù)研究函數(shù)的性質(zhì),考查運(yùn)算求解能力以及化歸轉(zhuǎn)化思想,屬基礎(chǔ)題.15、01【解析】
根據(jù)分段函數(shù)解析式,代入即可求解.【詳解】函數(shù),所以,.故答案為:0;1.【點(diǎn)睛】本題考查了分段函數(shù)求值的簡(jiǎn)單應(yīng)用,屬于基礎(chǔ)題.16、60【解析】
根據(jù)題中給的信息與雙曲線(xiàn)的定義可求得與,再在中,由余弦定理求解得,繼而得到各邊的長(zhǎng)度,再根據(jù)計(jì)算求解即可.【詳解】如圖所示:設(shè)雙曲線(xiàn)的半焦距為.因?yàn)?,,所以由勾股定理,得.所以.因?yàn)槭巧弦粋€(gè)靠近點(diǎn)的三等分點(diǎn),是的中點(diǎn),所以.由雙曲線(xiàn)的定義可知:,所以.在中,由余弦定理可得,所以,整理可得.所以,解得.所以.則.則,得.則的底邊上的高為.所以.故答案為:60【點(diǎn)睛】本題主要考查了雙曲線(xiàn)中利用定義與余弦定理求解線(xiàn)段長(zhǎng)度與面積的方法,需要根據(jù)雙曲線(xiàn)的定義表示各邊的長(zhǎng)度,再在合適的三角形里面利用余弦定理求得基本量的關(guān)系.屬于難題.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、見(jiàn)解析【解析】
(1)當(dāng)時(shí),函數(shù),其定義域?yàn)?,則,設(shè),,易知函數(shù)在上單調(diào)遞增,且,所以當(dāng)時(shí),,即;當(dāng)時(shí),,即,所以函數(shù)在上單調(diào)遞減,在上單調(diào)遞增,所以函數(shù)在處取得極小值,為,無(wú)極大值.(2)由題可得函數(shù)的定義域?yàn)?,,設(shè),,顯然函數(shù)在上單調(diào)遞增,當(dāng)時(shí),,,所以函數(shù)在內(nèi)有一個(gè)零點(diǎn),所以函數(shù)有且僅有一個(gè)零點(diǎn);當(dāng)時(shí),,,所以函數(shù)有且僅有一個(gè)零點(diǎn),所以函數(shù)有且僅有一個(gè)零點(diǎn);當(dāng)時(shí),,,因?yàn)?,所以,,又,所以函?shù)在內(nèi)有一個(gè)零點(diǎn),所以函數(shù)有且僅有一個(gè)零點(diǎn).綜上,函數(shù)有且僅有一個(gè)零點(diǎn).18、(Ⅰ);(Ⅱ)詳見(jiàn)解析.【解析】
(Ⅰ)依題意在上存在兩個(gè)極值點(diǎn),等價(jià)于在有兩個(gè)不等實(shí)根,由參變分類(lèi)可得,令,利用導(dǎo)數(shù)研究的單調(diào)性、極值,從而得到參數(shù)的取值范圍;(Ⅱ)由題解得,,要證成立,只需證:,即:,只需證:,設(shè),即證:,再分別證明,即可;【詳解】解:(Ⅰ)由題意可知,,在上存在兩個(gè)極值點(diǎn),等價(jià)于在有兩個(gè)不等實(shí)根,由可得,,令,則,令,可得,當(dāng)時(shí),,所以在上單調(diào)遞減,且當(dāng)時(shí),單調(diào)遞增;當(dāng)時(shí),單調(diào)遞減;所以是的極大值也是最大值,又當(dāng),當(dāng)大于0趨向與0,要使在有兩個(gè)根,則,所以的取值范圍為;(Ⅱ)由題解得,,要證成立,只需證:即:,只需證:設(shè),即證:要證,只需證:令,則在上為增函數(shù),即成立;要證,只需證明:令,則在上為減函數(shù),,即成立成立,所以成立.【點(diǎn)睛】本題考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性、極值,利用導(dǎo)數(shù)證明不等式,屬于難題;19、(1)單調(diào)遞增區(qū)間為,;單調(diào)遞減區(qū)間為;(2),;(3)證明見(jiàn)解析.【解析】
(1)由的正負(fù)可確定的單調(diào)區(qū)間;(2)利用基本不等式可求得時(shí),取得最小值,由導(dǎo)數(shù)的幾何意義可知,從而求得,求得切點(diǎn)坐標(biāo)后,可得到切線(xiàn)方程;(3)由極值點(diǎn)的定義可知是的兩個(gè)不等正根,由判別式大于零得到的取值范圍,同時(shí)得到韋達(dá)定理的形式;化簡(jiǎn)為,結(jié)合的范圍可證得結(jié)論.【詳解】(1)由題意得:的定義域?yàn)?,?dāng)時(shí),,,當(dāng)和時(shí),;當(dāng)時(shí),,的單調(diào)遞增區(qū)間為,;單調(diào)遞減區(qū)間為.(2),所以(當(dāng)且僅當(dāng),即時(shí)取等號(hào)),切線(xiàn)的斜率存在最小值,,解得:,,即切點(diǎn)為,從而切線(xiàn)方程,即:.(3),分別在,處取得極值,,是方程,即的兩個(gè)不等正根.則,解得:,且,.,,,即不等式成立.【點(diǎn)睛】本題考查導(dǎo)數(shù)在研究函數(shù)中的應(yīng)用,涉及到利用導(dǎo)數(shù)求解函數(shù)的單調(diào)區(qū)間、導(dǎo)數(shù)幾何意義的應(yīng)用、利用導(dǎo)數(shù)證明不等式等知識(shí);本題中證明不等式的關(guān)鍵是能夠通過(guò)極值點(diǎn)的定義將問(wèn)題轉(zhuǎn)變?yōu)橐辉畏匠谈姆植紗?wèn)題.20、(1)(2)【解析】
(1)利用零點(diǎn)分段法將表示為分段函數(shù)的形式,由此求得不等式的解集.(2)對(duì)分成三種情況,求得的最小值,由此求得的取值范圍.【詳解】(1)當(dāng)時(shí),,由此可知,的解集為(2)當(dāng)時(shí),的最小值為和中的最小值,其中,.所以恒成立.當(dāng)時(shí),,且,不恒成立,不符合題意.當(dāng)時(shí),,若,則,故不恒成立,不符合題意;若,則,故不恒成立,不符合題意.綜上,.【點(diǎn)睛】本小題主要考查絕對(duì)值不等式的解法,考查根據(jù)絕對(duì)值不等式恒成立求參數(shù)的取值范圍,考查分類(lèi)討論的數(shù)學(xué)思想方法,屬于中檔題.21、(1)見(jiàn)解析(2)【解析】
(1)由已知可證明平面,從而得證面面垂直,再由,得線(xiàn)面垂直,從而得,由直角三角形得結(jié)論;(2)以為軸建立空間直角坐標(biāo)系,用空間向量法示二面角.【詳解】(
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年行唐縣招教考試備考題庫(kù)及答案解析(奪冠)
- 2025年惠州衛(wèi)生職業(yè)技術(shù)學(xué)院?jiǎn)握新殬I(yè)技能測(cè)試題庫(kù)帶答案解析
- 2025年湖北三峽職業(yè)技術(shù)學(xué)院馬克思主義基本原理概論期末考試模擬題含答案解析(奪冠)
- 2024年貴州民族大學(xué)馬克思主義基本原理概論期末考試題含答案解析(奪冠)
- 2025年龍江縣招教考試備考題庫(kù)含答案解析(必刷)
- 2025年惠民縣招教考試備考題庫(kù)及答案解析(奪冠)
- 2025年山西醫(yī)藥學(xué)院馬克思主義基本原理概論期末考試模擬題及答案解析(必刷)
- 2025年江西信息應(yīng)用職業(yè)技術(shù)學(xué)院馬克思主義基本原理概論期末考試模擬題及答案解析(必刷)
- 2025年屏山縣幼兒園教師招教考試備考題庫(kù)帶答案解析(奪冠)
- 2025年陽(yáng)朔縣幼兒園教師招教考試備考題庫(kù)帶答案解析
- 2026年無(wú)錫工藝職業(yè)技術(shù)學(xué)院?jiǎn)握芯C合素質(zhì)考試題庫(kù)附答案解析
- 2026年中考語(yǔ)文一輪復(fù)習(xí)課件:記敘文類(lèi)閱讀技巧及示例
- 2025腫瘤靶向藥物皮膚不良反應(yīng)管理專(zhuān)家共識(shí)解讀課件
- 腳手架施工安全技術(shù)交底標(biāo)準(zhǔn)模板
- 海姆立克急救課件 (完整版)
- 淘寶主體變更合同范本
- 2025中好建造(安徽)科技有限公司第二次社會(huì)招聘13人筆試歷年參考題庫(kù)附帶答案詳解
- 《交易心理分析》中文
- 護(hù)理創(chuàng)新實(shí)踐與新技術(shù)應(yīng)用
- 2025年海南事業(yè)單位聯(lián)考筆試筆試考題(真題考點(diǎn))及答案
- 2025中國(guó)電信股份有限公司重慶分公司社會(huì)成熟人才招聘筆試考試參考題庫(kù)及答案解析
評(píng)論
0/150
提交評(píng)論