版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
GenerativeAIandCybersecurity:
Arevisitedclassic
ThegreatestriskswhenincorporatinggenerativeAIintoabusinessstructureare:
Misleadingoutcomesduetomodelhallucination
Dataleakageandcopyrightissuesduetounintentionaldisseminationorinclusionofregulatedor
company-confidentialdata
Trainingdata–subjects’privacyandconsentviolationswith
Modelcorruptionandabusewhenretrainingisbasedoncustomerresponsedata
AI
inadequateneed-to-knowandneed-to-useintrainingdataanddataoutputsmanagement
MeetingregulatoryandethicalresponsibilitiesinGenAIuse
Ethicalissuesorbiased
conclusionsbecauseofinaccurate,
incomplete,ortamperedtrainingdata
Thebiggest
risksaretodata
WhendesigningforsecuregenerativeAI,datariskstakepriority.Broadlyspeaking,theserisksoriginatefromthreeactivities:
Theexposureofconfidentialand/orregulatedinformation
Inaccurateinformationdisruptsprocesses,whetherdecisionaloroperational
GenAIfollowsafamiliarpatternforadoptionandcybersecurity,
promptingquestionsreminiscentofthosethataccompaniedthe
earlydaysofcloudcomputing.TherapidriseofgenerativeAI
presentsorganizationswiththeusualinnovationdilemma:isit
bettertoadoptacautiousandrestrictiveapproach,riskingmissingoutonopportunities,ortograntmorefreedom,attheriskof
exposingthemselvestonewrisks?
PotentialreputationaldamageiscausedwhenGenAItoolsareusedaschatbotsservingasinterfacesbetweencustomersandanorganization
Theseriskshavecommonthemesofidentifying,scrubbing,andprotectingtherightdataatthe
righttimeandputtingtherightguardrailsinplacearoundaGenAIsolution.Despiteitspotentialandtheexcitementsurroundingit,GenAIisultimatelyanotherenterprisetool:itrequirestheapplicationandadaptationofpolicies,controlsandmeasures
implementedatenterpriselevelandwithintheAIecosystem.Itbringschallengesofoperatingmodelsinternallyandmonitoringtheirinputandoutputcompliantly.
InaGenAIsystem,foundationalsecuritymustbedoneacrossfourdimensions:
.Framework,governance,andriskmanagement
.Dataandidentitysecurity
.TrustedGenAImodelsandtheiroutcomes
.Infrastructureandapplicationmonitoringanddelivery
ThreatmodelsareavailablefromNIST,MITRE,
Microsoft,Google,andothersintheindustrytobuildfasterandbereadyfornewrisks.
AGenAIsystemcanhavedifferentsecurityscopes.Usingcloudserviceproviders(CSP)asexamples,eachCSP(alsoknownashyperscalers)offersgenerative
AIsystemswithverydifferentsecurityscopes,
andeachproviderdefinesthisscopedifferently.
ConsidersharedresponsibilityaroundthereferencearchitecturefoundinFigure1.
2|GenerativeAI&Cybersecurity
GenerativeAI&Cybersecurity|3
Data
Datacollection,datapreparationandtransformation
Varioususecasesthatmatterstotheendusersandarerelevantbusinesscases
modelsthataretailoredtoagivenindustryorusecaseToolstooperationalizeGen-AImodels
Gen-AIapplicationssuchascompute,networkandstorage
Applications
SoftwareapplicationsthatprimarilyuseGen-AImodelstoperformatask
Monitoring&Maintain
Monitorperformance,userexperienceandoutcomequality
Models&Tools
Gen-AIfoundationmodels&domainspecific
Infrastructure
Infrastructurecomponentsusedtobuildout
Network
Communication
Storage
Compute
Figure1:ConceptualreferencearchitectureforGenAIsharedresponsibility.
AmazonWebServicesfocusesonprovidingthe
infrastructureforgenerativeAImodels,aswith
AmazonBedrock.Variousdegreesofcustomizationandownershiparepossible.Theclient’ssystemis
definedastheprovidedinfrastructure,andtheirpartofsharedresponsibilityincludesthesecurityofthemodels,data,andapplications.
GoogleCloudPlatform’s(GCP)approachfocusesontheinfrastructureandmodels,offeringVertexAIandtheModelGardentoempowercustomers.Customers
focusontheapplicationlayer,monitoring,andtheGenAIinterface,whileGCPhassharedresponsibilityfromthemodeldowntodataandinfrastructure.
WithMicrosoftAzure’sCo-pilot,theCSPtakes
ownershipofinfrastructure,model,application,and
everythinginbetween..Thecustomerfocusesondatasecurityandbusinesspurposes.Datainterfacesdefinetheirsystem,whilethemodels,infrastructure,and
applicationinterfacearetreatedmoreasblackboxes.
4|GenerativeAI&CybersecurityGenerativeAI&Cybersecurity|5
Establishing
asecurity
frameworkwithgovernance
PositionsonhowtoregulateGenAIvarywidely,
fromoutrightprohibitiontocompletelaissez-faire.Nosinglegovernmentorsupranationalpolitical
entitywillbeabletodictatehowGenAIproliferates.Nevertheless,enterprisesmustworkwithinlegal
andregulatorystructuresbasedontheirclients,geographies,andethics.
Toanticipatewhat’sexpectedingenerativeAIgovernance,enterprisesshouldconsiderthefollowing:
.ExistingandupcomingregulationsthatwillinfluenceAIuse
.Anenterprise’suniquerisktolerancesfortechnologyandregulations
.TeammembereducationonhowGenAIworks,itsinherentproblems,andriskssuchasdataleaksandtheorganization’sownpolicies
.AsecureGenAIreferencearchitecturedescribinghowtomanagerisks
Thereferencearchitecturemustaddresstherisksofvariousmodelsindiverseways.Afullproprietarysolution,includingGenAImodeldevelopmentandpre-training,meansanorganizationwillhavethe
abilityandobligationtoaddressitsspecificrisksend-to-end.
InthecaseofSoftware-as-a-ServicegenerativeAI,manyrisksneedtobeaddressedthroughcontractandthird-andfourth-partyriskmanagement.
OrganizationscanalsodeploymorethanoneGenAIsolutionwithdifferentarchitecturemodels,andhybridmodels.
Governancebodies-suchasaGenerativeAICenterofExcellence-areneededinenterprisestohelpshape
thesecureadoptionofGenAI.Theyhelpaccelerate
low-risk,high-impactbusinessexperimentswhile
enforcingappropriateoversightofhigh-riskplans.Bydevelopingrepeatable,enforceable,anddisseminatedguidelines,enterprisescanleverageGenAIsolutionsmorequicklyandsecurely.
Providerassumedresponsibility
SaaS
ExternalModel
PaaS
IaaS
Applications
Monitoring&Maintain
Models&Tools
Data
Infrastructure
M
Network
Communication
Storage
Compute
Figure2:SharedresponsibilitymodelsforvariouscloudproviderGenAIdeliverymodels
6|GenerativeAI&CybersecurityGenerativeAI&Cybersecurity|7
SecuringData
GenAIlackshumanfilterswhenitproducesdata:themachinesearchesthrougheverythingitcanaccess
andthenreproducesthisknowledgewithcompletecandorregardlessofsensitivity.Itis,therefore,
imperativetosetlimits.Todothis,enterprisesmust
inventorytheirdata:classifyit;implementcontrolsforquality,representativeness,integrity,andaccess;andcreaterepositoriesofauthorizeddataforGenAIapplications.
GenAI’sconsumptionofdatamakesdata
classificationevenmoreessentialtoadequately
protectanenterpriseandcustomers.Classification
allowstightercontrolofdatausedtotrain,specialize,andrefinemodels.Accesstoitsoutputcanbe
restrictedanddataleakprotectiontoolscanbe
implemented;oraresponsecanbelimitedusingasubsetofdatabasedonaright-to-knowrule.
Withathird-partyLLM,thereislimitedabilityto
build“native”guardrailsaroundinputsandoutputs.Likewise,theabilitytoimplementguardrailsinsidethelearningphasesofaGenerativeAdversarial
Network1islimitedwhenusingclosedmodelsinan
Data
1.Training
Themodelisbuiltwhich
encodestherealtionships,
patternsandsequences
withintrainingdataand
modelvalidationdata.
●
TrainedModel
●
3.EnsuringCorrectness
Thereisnoguranteeofreal-worldcorrectnessfromagenerativeAImodels,anditsometimes
hallucinates?ctionalresponse
2.Generation
Thetrainedmodelcanthengeneratenewoutputsliketheoriginaldataitwastrainedon
(Optional)
FineTuning
Thegenericfoundation
modelmightbe?ne-tuned
togiveitexposuretoa
specialistarea.
(Optional)Alignment
Modelmightbetweaked
toaligninmorewith
expectedhumanresponse
Figure3:DatalifecycleinsideagenerativeAIapplication
application.Itiscriticaltoconsiderwhetherdata
canbeinspectedandvalidated,andwhetherits
inputsandoutputscanbeobservedwhenchoosingcomponentsofasystem.
Amodel’soutputmustbesubjecttoverification
todetecthallucinations,maliciousreinforcement,
ordriftsfromexpectedbehaviorovertime.When
usingreal-timemodeloutput,suchaswithachatbot,theobservabilityofpastperformancetopreempt
unacceptableresponsesisimportant.Akeypointis
tounderstandthedatalifecycleanditssensitivity,ascapturedinFigure3.Datasecurityrequirementscanchangeoveritslifecycle,dependingonitsproximityto,orcominglingwithotherdata.
SuccessfullysecuringGenAIsolutionsisamulti-
disciplineapproachthatrequirespartnerships
betweencybersecurity,datagovernance,data
science,andlegalandcompliance,sincedisciplineddatamanagementisattheheartofachievingGenAIdatasecurity.
Dependencies
Data
Governance
Data
Sciences
Security
Legal&Compliance
Figure4:Multi-disciplineinteractionsnecessaryforGenAIsuccess
8|GenerativeAI&CybersecurityGenerativeAI&Cybersecurity|9
TrustedGen
AImodelsandtheiroutcomes
Itmaynotbepossibletogainaccesstoandthen
validatealldatasetsusedduringthelifecycleof
aGenAIsolution.Amodelsuchasthecommonly
usedLargeLanguageModel(LLM),multi-model
models,andtransformer-basedmodelsgeneratingoutcomesthroughuserpromptorAPIrequestscanfallintooneofthefollowingmodelcategories:
.Developedandinitiallytrainedbyanexternal
party(OpenAI’sChatGPT,forinstance)andused“asis”bytheenterprise
.Developedandinitiallytrainedbyanexternal
party,thenspecializedbytheenterprisetoa
specificdomain(i.e.,specialism)withanewdatasettoaddressspecificusecases
.DevelopedandtrainedbytheenterpriseentirelySupplychainsecurityandthird/fourth-partyrisk
managementarecrucialforthefirsttwocategories.
Itisevenmoreimportanttointegratesecuritycontrolssuchasmodelauditability,dataleakageprevention,hallucinationandbiasdetection(i.e.guardrails)intotheapplicationdevelopment
pipeline.
Dataquality
Therecurrentuseandprovenanceoftrainingdataisafocalpointwhenusingexternallysourcedmodels.Itscomposition,howoftenitchanges,andhowrecursionbetweencustomerprompt/responsepairingsand
reinforcementtrainingofthemodeloccursshouldbeclear.
Whendevelopingandtrainingaproprietarymodel(thirdcategoryabove),someriskscanbeamplifiedwhileothersaremitigated.Theneedtounderstanddata’sprovenanceandclassificationoftrainingdatawhilealsotestingforbiasandderogatoryresponsesfallsontheenterprise,eventhoughthosecanbe
differentdisciplines.Atthesametime,therisks
ofrecursivetrainingfromprompt/responsepairsarereducedastheinformationdoesn’tleavethelocalmodel.
Forallmodels,organizationsmustapplytheirownadditional,adaptablecontrols,suchas:
.Specificsecuritymonitoringrules
.Completelyoriginalmeasures,suchascontrolstodetectspecificnewattacksoruserbehaviors.
.Formultiandhybridarchitectures,APIsecurityandCI/CDsecure-by-designdomains
Thekeytoassuranceofdata’sintegrityisdue
diligenceonaprovider’ssecurity,privacycontrols,andcompliance.Theircommitmentsandresponsibilities
shouldbeclearlydefinedinanycontract.
10|GenerativeAI&CybersecurityGenerativeAI&Cybersecurity|11
Application
and
infrastructuremonitoring
anddelivery
ThefinalaspectofsecurityforGenAIisprotecting
applicationsfrombeingrenderedinoperativeor
unavailable.Thisrequiresdeployingsecuritycontrolswithinapplicationsandinfrastructure,covering
compute,endpoint,network,andstorage.
Thesamesecurityandcompliancehygieneappliedtoclassicsecuritymustbeappliedhere,especiallythosehandlingsensitivedata.Corporatesecurity
policiesandmandatorysecuritycontrolsovertheselayersareasimportantasever.
GenAIapplicationswillrequiresomenewsecuritycontrols,suchaspromptanalysis,andadaptationto
existingsecuritycontrols,suchasedgeprotection,tobeeffective.Buildingadequate,automated
governancearounddataclassificationandusageshouldbepartofanysecurityroadmap.
SoftwaresupplychainmanagementismoreimportantingenerativeAIapplicationdevelopment,e.g.,for
pinningdependencyversionsinmodeldevelopmenttoensuretrainingrunsdonotbecomecorrupted.Thisisimportantformonitoringanddeliverysinceitisa
partofthesoftwaredeliverylifecycle.Continuous
Integration(CI)andcontinuousdelivery(CD)throughaDevSecOpspipelineforapplicationdevelopment
canbeusedtosecuremodeldevelopment.Red
teaming2,anapplicationtotestforvulnerabilities,shouldincludetestingofanyprompts.Thisaimstostopmalicioususersfrom:
.Corruptingorrecoveringtrainingdata
.Manipulatingresultsforotherusers
.Performingdenialofserviceattacks
.Exfiltratingdata
AsgenerativeAIevolves,securityfunctionsnativetoGenAIwilltoo,aswilltheircapabilitiestointegratewithexternalsecuritysolutions.
12|GenerativeA
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2026貴州貴陽(yáng)市康養(yǎng)集團(tuán)有限公司藥用植物園黔康匯康養(yǎng)服務(wù)分公司招聘2人備考題庫(kù)及1套完整答案詳解
- 體檢中心消毒隔離制度
- 優(yōu)莎娜的獎(jiǎng)金制度
- 2026浙江溫州龍灣區(qū)教育局招聘編外工作人員3人備考題庫(kù)參考答案詳解
- 生豬屠宰獸醫(yī)衛(wèi)生檢驗(yàn)人員考試題庫(kù)及答案
- 2026浙江寧波市象山縣汽車輪渡有限公司招聘7人備考題庫(kù)及答案詳解參考
- 2026那福建省寧德市福安市德藝學(xué)校高中部27人教師招聘?jìng)淇碱}庫(kù)完整答案詳解
- 2026浙江溫州市龍灣區(qū)市場(chǎng)監(jiān)督管理局招聘辦公室文員1人備考題庫(kù)及1套參考答案詳解
- 2026青海西寧第十中學(xué)誠(chéng)聘教師3人備考題庫(kù)完整參考答案詳解
- 2026湖北省中國(guó)地質(zhì)大學(xué)(武漢) 計(jì)算機(jī)學(xué)院勞務(wù)派遣制工作人員招聘2人備考題庫(kù)及答案詳解參考
- 2026中國(guó)電信四川公用信息產(chǎn)業(yè)有限責(zé)任公司社會(huì)成熟人才招聘?jìng)淇碱}庫(kù)完整參考答案詳解
- 2026年黃委會(huì)事業(yè)單位考試真題
- 供水管網(wǎng)及配套設(shè)施改造工程可行性研究報(bào)告
- 2026年及未來(lái)5年中國(guó)高帶寬存儲(chǔ)器(HBM)行業(yè)市場(chǎng)調(diào)查研究及投資前景展望報(bào)告
- 罷免物業(yè)申請(qǐng)書(shū)
- 高血壓的急癥與處理
- 表面粗糙度與檢測(cè)(新國(guó)標(biāo))課件
- 人工智能在系統(tǒng)集成中的應(yīng)用
- 大九九乘法口訣表(可下載打印)
- 金屬非金屬礦山安全操作規(guī)程
- 壓鑄鋁合金熔煉改善
評(píng)論
0/150
提交評(píng)論