2025屆云南省曲靖市宜良縣第六中學(xué)高三第二次調(diào)研數(shù)學(xué)試卷含解析_第1頁(yè)
2025屆云南省曲靖市宜良縣第六中學(xué)高三第二次調(diào)研數(shù)學(xué)試卷含解析_第2頁(yè)
2025屆云南省曲靖市宜良縣第六中學(xué)高三第二次調(diào)研數(shù)學(xué)試卷含解析_第3頁(yè)
2025屆云南省曲靖市宜良縣第六中學(xué)高三第二次調(diào)研數(shù)學(xué)試卷含解析_第4頁(yè)
2025屆云南省曲靖市宜良縣第六中學(xué)高三第二次調(diào)研數(shù)學(xué)試卷含解析_第5頁(yè)
已閱讀5頁(yè),還剩16頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2025屆云南省曲靖市宜良縣第六中學(xué)高三第二次調(diào)研數(shù)學(xué)試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫(xiě)在“答題紙”相應(yīng)位置上。2.請(qǐng)用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫(xiě)姓名和準(zhǔn)考證號(hào)。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無(wú)效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知命題:使成立.則為()A.均成立 B.均成立C.使成立 D.使成立2.在三棱錐中,,,P在底面ABC內(nèi)的射影D位于直線AC上,且,.設(shè)三棱錐的每個(gè)頂點(diǎn)都在球Q的球面上,則球Q的半徑為()A. B. C. D.3.在中,內(nèi)角所對(duì)的邊分別為,若依次成等差數(shù)列,則()A.依次成等差數(shù)列 B.依次成等差數(shù)列C.依次成等差數(shù)列 D.依次成等差數(shù)列4.我們熟悉的卡通形象“哆啦A夢(mèng)”的長(zhǎng)寬比為.在東方文化中通常稱(chēng)這個(gè)比例為“白銀比例”,該比例在設(shè)計(jì)和建筑領(lǐng)域有著廣泛的應(yīng)用.已知某電波塔自下而上依次建有第一展望臺(tái)和第二展望臺(tái),塔頂?shù)剿椎母叨扰c第二展望臺(tái)到塔底的高度之比,第二展望臺(tái)到塔底的高度與第一展望臺(tái)到塔底的高度之比皆等于“白銀比例”,若兩展望臺(tái)間高度差為100米,則下列選項(xiàng)中與該塔的實(shí)際高度最接近的是()A.400米 B.480米C.520米 D.600米5.已知函數(shù)為奇函數(shù),且,則()A.2 B.5 C.1 D.36.定義,已知函數(shù),,則函數(shù)的最小值為()A. B. C. D.7.已知若在定義域上恒成立,則的取值范圍是()A. B. C. D.8.一只螞蟻在邊長(zhǎng)為的正三角形區(qū)域內(nèi)隨機(jī)爬行,則在離三個(gè)頂點(diǎn)距離都大于的區(qū)域內(nèi)的概率為()A. B. C. D.9.明代數(shù)學(xué)家程大位(1533~1606年),有感于當(dāng)時(shí)籌算方法的不便,用其畢生心血寫(xiě)出《算法統(tǒng)宗》,可謂集成計(jì)算的鼻祖.如圖所示的程序框圖的算法思路源于其著作中的“李白沽酒”問(wèn)題.執(zhí)行該程序框圖,若輸出的的值為,則輸入的的值為()A. B. C. D.10.函數(shù)的值域?yàn)椋ǎ〢. B. C. D.11.已知雙曲線的右焦點(diǎn)為為坐標(biāo)原點(diǎn),以為直徑的圓與雙曲線的一條漸近線交于點(diǎn)及點(diǎn),則雙曲線的方程為()A. B. C. D.12.設(shè)為虛數(shù)單位,復(fù)數(shù),則實(shí)數(shù)的值是()A.1 B.-1 C.0 D.2二、填空題:本題共4小題,每小題5分,共20分。13.如圖是一個(gè)算法偽代碼,則輸出的的值為_(kāi)______________.14.能說(shuō)明“若對(duì)于任意的都成立,則在上是減函數(shù)”為假命題的一個(gè)函數(shù)是________.15.若,則的最小值為_(kāi)_______.16.若函數(shù)為偶函數(shù),則.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知函數(shù).(1)討論的單調(diào)性;(2)若,設(shè),證明:,,使.18.(12分)已知函數(shù)f(x)=|x-2|-|x+1|.(Ⅰ)解不等式f(x)>1;(Ⅱ)當(dāng)x>0時(shí),若函數(shù)g(x)(a>0)的最小值恒大于f(x),求實(shí)數(shù)a的取值范圍.19.(12分)已知是等腰直角三角形,.分別為的中點(diǎn),沿將折起,得到如圖所示的四棱錐.(Ⅰ)求證:平面平面.(Ⅱ)當(dāng)三棱錐的體積取最大值時(shí),求平面與平面所成角的正弦值.20.(12分)已知函數(shù).(1)證明:當(dāng)時(shí),;(2)若函數(shù)有三個(gè)零點(diǎn),求實(shí)數(shù)的取值范圍.21.(12分)如圖,在四邊形ABCD中,AB//CD,∠ABD=30°,AB=2CD=2AD=2,DE⊥平面ABCD,EF//BD,且BD=2EF.(Ⅰ)求證:平面ADE⊥平面BDEF;(Ⅱ)若二面角CBFD的大小為60°,求CF與平面ABCD所成角的正弦值.22.(10分)在直角坐標(biāo)系中,曲線的參數(shù)方程為以為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,設(shè)點(diǎn)在曲線上,點(diǎn)在曲線上,且為正三角形.(1)求點(diǎn),的極坐標(biāo);(2)若點(diǎn)為曲線上的動(dòng)點(diǎn),為線段的中點(diǎn),求的最大值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】試題分析:原命題為特稱(chēng)命題,故其否定為全稱(chēng)命題,即.考點(diǎn):全稱(chēng)命題.2、A【解析】

設(shè)的中點(diǎn)為O先求出外接圓的半徑,設(shè),利用平面ABC,得,在及中利用勾股定理構(gòu)造方程求得球的半徑即可【詳解】設(shè)的中點(diǎn)為O,因?yàn)椋酝饨訄A的圓心M在BO上.設(shè)此圓的半徑為r.因?yàn)?,所以,解?因?yàn)?,所?設(shè),易知平面ABC,則.因?yàn)?,所以,即,解?所以球Q的半徑.故選:A【點(diǎn)睛】本題考查球的組合體,考查空間想象能力,考查計(jì)算求解能力,是中檔題3、C【解析】

由等差數(shù)列的性質(zhì)、同角三角函數(shù)的關(guān)系以及兩角和的正弦公式可得,由正弦定理可得,再由余弦定理可得,從而可得結(jié)果.【詳解】依次成等差數(shù)列,,正弦定理得,由余弦定理得,,即依次成等差數(shù)列,故選C.【點(diǎn)睛】本題主要考查等差數(shù)列的定義、正弦定理、余弦定理,屬于難題.解三角形時(shí),有時(shí)可用正弦定理,有時(shí)也可用余弦定理,應(yīng)注意用哪一個(gè)定理更方便、簡(jiǎn)捷.如果式子中含有角的余弦或邊的二次式,要考慮用余弦定理;如果遇到的式子中含有角的正弦或邊的一次式時(shí),則考慮用正弦定理;以上特征都不明顯時(shí),則要考慮兩個(gè)定理都有可能用到.4、B【解析】

根據(jù)題意,畫(huà)出幾何關(guān)系,結(jié)合各線段比例可先求得第一展望臺(tái)和第二展望臺(tái)的距離,進(jìn)而由比例即可求得該塔的實(shí)際高度.【詳解】設(shè)第一展望臺(tái)到塔底的高度為米,塔的實(shí)際高度為米,幾何關(guān)系如下圖所示:由題意可得,解得;且滿(mǎn)足,故解得塔高米,即塔高約為480米.故選:B【點(diǎn)睛】本題考查了對(duì)中國(guó)文化的理解與簡(jiǎn)單應(yīng)用,屬于基礎(chǔ)題.5、B【解析】

由函數(shù)為奇函數(shù),則有,代入已知即可求得.【詳解】.故選:.【點(diǎn)睛】本題考查奇偶性在抽象函數(shù)中的應(yīng)用,考查學(xué)生分析問(wèn)題的能力,難度較易.6、A【解析】

根據(jù)分段函數(shù)的定義得,,則,再根據(jù)基本不等式構(gòu)造出相應(yīng)的所需的形式,可求得函數(shù)的最小值.【詳解】依題意得,,則,(當(dāng)且僅當(dāng),即時(shí)“”成立.此時(shí),,,的最小值為,故選:A.【點(diǎn)睛】本題考查求分段函數(shù)的最值,關(guān)鍵在于根據(jù)分段函數(shù)的定義得出,再由基本不等式求得最值,屬于中檔題.7、C【解析】

先解不等式,可得出,求出函數(shù)的值域,由題意可知,不等式在定義域上恒成立,可得出關(guān)于的不等式,即可解得實(shí)數(shù)的取值范圍.【詳解】,先解不等式.①當(dāng)時(shí),由,得,解得,此時(shí);②當(dāng)時(shí),由,得.所以,不等式的解集為.下面來(lái)求函數(shù)的值域.當(dāng)時(shí),,則,此時(shí);當(dāng)時(shí),,此時(shí).綜上所述,函數(shù)的值域?yàn)?,由于在定義域上恒成立,則不等式在定義域上恒成立,所以,,解得.因此,實(shí)數(shù)的取值范圍是.故選:C.【點(diǎn)睛】本題考查利用函數(shù)不等式恒成立求參數(shù),同時(shí)也考查了分段函數(shù)基本性質(zhì)的應(yīng)用,考查分類(lèi)討論思想的應(yīng)用,屬于中等題.8、A【解析】

求出滿(mǎn)足條件的正的面積,再求出滿(mǎn)足條件的正內(nèi)的點(diǎn)到頂點(diǎn)、、的距離均不小于的圖形的面積,然后代入幾何概型的概率公式即可得到答案.【詳解】滿(mǎn)足條件的正如下圖所示:其中正的面積為,滿(mǎn)足到正的頂點(diǎn)、、的距離均不小于的圖形平面區(qū)域如圖中陰影部分所示,陰影部分區(qū)域的面積為.則使取到的點(diǎn)到三個(gè)頂點(diǎn)、、的距離都大于的概率是.故選:A.【點(diǎn)睛】本題考查幾何概型概率公式、三角形的面積公式、扇形的面積公式的應(yīng)用,考查計(jì)算能力,屬于中等題.9、C【解析】

根據(jù)程序框圖依次計(jì)算得到答案.【詳解】,;,;,;,;,此時(shí)不滿(mǎn)足,跳出循環(huán),輸出結(jié)果為,由題意,得.故選:【點(diǎn)睛】本題考查了程序框圖的計(jì)算,意在考查學(xué)生的理解能力和計(jì)算能力.10、A【解析】

由計(jì)算出的取值范圍,利用正弦函數(shù)的基本性質(zhì)可求得函數(shù)的值域.【詳解】,,,因此,函數(shù)的值域?yàn)?故選:A.【點(diǎn)睛】本題考查正弦型函數(shù)在區(qū)間上的值域的求解,解答的關(guān)鍵就是求出對(duì)象角的取值范圍,考查計(jì)算能力,屬于基礎(chǔ)題.11、C【解析】

根據(jù)雙曲線方程求出漸近線方程:,再將點(diǎn)代入可得,連接,根據(jù)圓的性質(zhì)可得,從而可求出,再由即可求解.【詳解】由雙曲線,則漸近線方程:,,連接,則,解得,所以,解得.故雙曲線方程為.故選:C【點(diǎn)睛】本題考查了雙曲線的幾何性質(zhì),需掌握雙曲線的漸近線求法,屬于中檔題.12、A【解析】

根據(jù)復(fù)數(shù)的乘法運(yùn)算化簡(jiǎn),由復(fù)數(shù)的意義即可求得的值.【詳解】復(fù)數(shù),由復(fù)數(shù)乘法運(yùn)算化簡(jiǎn)可得,所以由復(fù)數(shù)定義可知,解得,故選:A.【點(diǎn)睛】本題考查了復(fù)數(shù)的乘法運(yùn)算,復(fù)數(shù)的意義,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、5【解析】

執(zhí)行循環(huán)結(jié)構(gòu)流程圖,即得結(jié)果.【詳解】執(zhí)行循環(huán)結(jié)構(gòu)流程圖得,結(jié)束循環(huán),輸出.【點(diǎn)睛】本題考查循環(huán)結(jié)構(gòu)流程圖,考查基本分析與運(yùn)算能力,屬基礎(chǔ)題.14、答案不唯一,如【解析】

根據(jù)對(duì)基本函數(shù)的理解可得到滿(mǎn)足條件的函數(shù).【詳解】由題意,不妨設(shè),則在都成立,但是在是單調(diào)遞增的,在是單調(diào)遞減的,說(shuō)明原命題是假命題.所以本題答案為,答案不唯一,符合條件即可.【點(diǎn)睛】本題考查對(duì)基本初等函數(shù)的圖像和性質(zhì)的理解,關(guān)鍵是假設(shè)出一個(gè)在上不是單調(diào)遞減的函數(shù),再檢驗(yàn)是否滿(mǎn)足命題中的條件,屬基礎(chǔ)題.15、【解析】

由基本不等式,可得到,然后利用,可得到最小值,要注意等號(hào)取得的條件?!驹斀狻坑深}意,,當(dāng)且僅當(dāng)時(shí)等號(hào)成立,所以,當(dāng)且僅當(dāng)時(shí)取等號(hào),所以當(dāng)時(shí),取得最小值.【點(diǎn)睛】利用基本不等式求最值必須具備三個(gè)條件:①各項(xiàng)都是正數(shù);②和(或積)為定值;③等號(hào)取得的條件。16、1【解析】試題分析:由函數(shù)為偶函數(shù)函數(shù)為奇函數(shù),.考點(diǎn):函數(shù)的奇偶性.【方法點(diǎn)晴】本題考查導(dǎo)函數(shù)的奇偶性以及邏輯思維能力、等價(jià)轉(zhuǎn)化能力、運(yùn)算求解能力、特殊與一般思想、數(shù)形結(jié)合思想與轉(zhuǎn)化思想,具有一定的綜合性和靈活性,屬于較難題型.首先利用轉(zhuǎn)化思想,將函數(shù)為偶函數(shù)轉(zhuǎn)化為函數(shù)為奇函數(shù),然后再利用特殊與一般思想,?。⒔獯痤}:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)見(jiàn)解析;(2)證明見(jiàn)解析.【解析】

(1),分,,,四種情況討論即可;(2)問(wèn)題轉(zhuǎn)化為,利用導(dǎo)數(shù)找到與即可證明.【詳解】(1).①當(dāng)時(shí),恒成立,當(dāng)時(shí),;當(dāng)時(shí),,所以,在上是減函數(shù),在上是增函數(shù).②當(dāng)時(shí),,.當(dāng)時(shí),;當(dāng)時(shí),;當(dāng)時(shí),,所以,在上是減函數(shù),在上是增函數(shù),在上是減函數(shù).③當(dāng)時(shí),,則在上是減函數(shù).④當(dāng)時(shí),,當(dāng)時(shí),;當(dāng)時(shí),;當(dāng)時(shí),,所以,在上是減函數(shù),在上是增函數(shù),在上是減函數(shù).(2)由題意,得.由(1)知,當(dāng),時(shí),,.令,,故在上是減函數(shù),有,所以,從而.,,則,令,顯然在上是增函數(shù),且,,所以存在使,且在上是減函數(shù),在上是增函數(shù),,所以,所以,命題成立.【點(diǎn)睛】本題考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性以及證明不等式的問(wèn)題,考查學(xué)生邏輯推理能力,是一道較難的題.18、(Ⅰ);(Ⅱ)?!窘馕觥?/p>

(Ⅰ)分類(lèi)討論,去掉絕對(duì)值,求得原絕對(duì)值不等式的解集;(Ⅱ)由條件利用基本不等式求得,,再由,求得的范圍.【詳解】(Ⅰ)當(dāng)時(shí),原不等式可化為,此時(shí)不成立;當(dāng)時(shí),原不等式可化為,解得,即;當(dāng)時(shí),原不等式可化為,解得.綜上,原不等式的解集是.(Ⅱ)因?yàn)?,?dāng)且僅當(dāng)時(shí)等號(hào)成立,所以.當(dāng)時(shí),,所以.所以,解得,故實(shí)數(shù)的取值范圍為.【點(diǎn)睛】本題主要考查了絕對(duì)值不等式的解法,以及轉(zhuǎn)化與化歸思想,難度一般;常見(jiàn)的絕對(duì)值不等式的解法,法一:利用絕對(duì)值不等式的幾何意義求解,體現(xiàn)了數(shù)形結(jié)合的思想;法二:利用“零點(diǎn)分段法”求解,體現(xiàn)了分類(lèi)討論的思想;法三:通過(guò)構(gòu)造函數(shù),利用函數(shù)的圖象求解,體現(xiàn)了函數(shù)與方程的思想.19、(Ⅰ)見(jiàn)解析.(Ⅱ).【解析】

(I)證明平面得出平面,根據(jù)面面垂直的判定定理得到結(jié)論;(II)當(dāng)平面時(shí),棱錐體積最大,建立空間坐標(biāo)系,計(jì)算兩平面的法向量,計(jì)算法向量的夾角得出答案.【詳解】(I)證明:分別為的中點(diǎn),,又平面平面,又平面平面平面(II),為定值當(dāng)平面時(shí),三棱錐的體積取最大值以為原點(diǎn),以為坐標(biāo)軸建立空間直角坐標(biāo)系則,設(shè)平面的法向量為,則即,令可得平面是平面的一個(gè)法向量平面與平面所成角的正弦值為【點(diǎn)睛】本題考查了面面垂直的判定,二面角的計(jì)算,關(guān)鍵是能夠根據(jù)體積的最值確定垂直關(guān)系,從而可以建立起空間直角坐標(biāo)系,利用空間向量法求得二面角,屬于中檔題.20、(1)見(jiàn)解析;(2)【解析】

(1)要證明,只需證明即可;(2)有3個(gè)根,可轉(zhuǎn)化為有3個(gè)根,即與有3個(gè)不同交點(diǎn),利用導(dǎo)數(shù)作出的圖象即可.【詳解】(1)令,則,當(dāng)時(shí),,故在上單調(diào)遞增,所以,即,所以.(2)由已知,,依題意,有3個(gè)零點(diǎn),即有3個(gè)根,顯然0不是其根,所以有3個(gè)根,令,則,當(dāng)時(shí),,當(dāng)時(shí),,當(dāng)時(shí),,故在單調(diào)遞減,在,上單調(diào)遞增,作出的圖象,易得.故實(shí)數(shù)的取值范圍為.【點(diǎn)睛】本題考查利用導(dǎo)數(shù)證明不等式以及研究函數(shù)零點(diǎn)個(gè)數(shù)問(wèn)題,考查學(xué)生數(shù)形結(jié)合的思想,是一道中檔題.21、(1)見(jiàn)解析(2)【解析】分析:(1)根據(jù)面面垂直的判定定理即可證明平面ADE⊥平面BDEF;(2)建立空間直角坐標(biāo)系,利用空間向量法即可求CF與平面ABCD所成角的正弦值;也可以應(yīng)用常規(guī)法,作出線面角,放在三角形當(dāng)中來(lái)求解.詳解:(Ⅰ)在△ABD中,∠ABD=30°,由AO2=AB2+BD2-2AB·BDcos30°,解得BD=,所以AB2+BD2=AB2,根據(jù)勾股定理得∠ADB=90°∴AD⊥BD.又因?yàn)镈E⊥平面ABCD,AD平面ABCD,∴AD⊥DE.又因?yàn)锽DDE=D,所以AD⊥平面BDEF,又AD平面ABCD,∴平面ADE⊥平面BDEF,(Ⅱ)方法一:如圖,由已知可得,,則,則三角形BCD為銳角為30°的等腰三角形.則.過(guò)點(diǎn)C做,交DB、AB于點(diǎn)G,H,則點(diǎn)G為點(diǎn)F在面ABCD上的投影.連接FG,則,DE⊥平面ABCD,則平面.過(guò)G做于點(diǎn)I,則BF平面,即角為二面角CBFD的平面角,則60°.則,,則.在直角梯形BDEF中,G為BD中點(diǎn),,,,設(shè),則,

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論