版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
金融大數(shù)據(jù)創(chuàng)業(yè)案例燒了五千萬美元的教訓(xùn)12ParallelUniverseGFW3Aboutme4BankingGoogleCheckoutAdwordsGoogleMapStartup(today’sstory)SocialmediaadvertisingStartupAdvisor5TheIdea6ABetterGroupon7What’sWrongwithGroupon?What’sWrongwithGroupon?PlatformSellersBuyersTheIdeaHelpretailers/merchantstosendhighlytargetedandrelevantpromotionalofferstoconsumerswhohavehighinterestsintheirproduct“Take$10offanypurchaseatXYZstore,offerexpiresin10days”Whereisthedata?Whereisdata?MerchantsthemselvesOnlinetrafficlogsPOSmachineBanks…Howdowegetthedata?Howdowegetthedata?Banksdon’thavetechnology&expertisetodoitrightPartnershipwithbanksWin-winproposalwithpartnersBothonlineandoff-lineWegotdata!Wegotdata!6outoftop8majorbanksCreditcard/debitcardAnonymizedtransactionleveldata2+yearsofhistoricaldata+dailyrefreshesNowwhat?Bigdata!
Machinelearning!
Bigdata!
Machinelearning!
Butbeforethat…
DataProcessingGeodata:locationofstores,locationofcustomersMatchtransactiontolocation/storeCategoryofstoresNatureofthetransaction(online,phone,mobile,etc.)BankregulationsAggregationlevelDataProcessingConsumerTransactionDataRetailerDataHDFSPostgresqlaggregationPredictiveModelingConsumerbehaviorpredictionRetailer1Retailer2Retailer3…RetailerNConsumer1???Consumer2??Consumer3???Consumer4??…ConsumerM??“Wheredoyourcustomersalsospendmoneyat?”AgreattoolforSales/MarketingIdentifypotentialclientsCompetitoranalysisStrong/weakstores/areasCross-categorypromotionsPredictiveModelingInputvariables:location,userspend,shoppingfrequency,categorypreference,timing,etc.Output:purchaseprobability,purchaseamountUser1User2UserM…Retail1Retail2RetailN…User1User2UserM…Retail1Retail2RetailN…Forevery(user,retailer)pair,everyweekPredictingprobabilityofapurchaseCouponvsOrganicOnlinevsofflineNewcustomervsexistingcustomerNewcustomerincategoryvsexistingcustomerincategoryShoppingfrequencydifferencebetweencategoriesBirthdays,annualeventsMatchrate:redemptionreallyhappened?PredictingspendamountRankingofhistoricalspendExistingcustomersIn-categorycustomersHowtodefinecategories?OptimizationProfitableoffers:Applyfilteratretailerlevel,dependingoncoupontypeWhatwecareabout:TotalRevenuesum((expectedspend–discount)*profitmargin*expectedresponserate)Sumoverallusers,maximumoneretailerperuserResponsevolumesum(expectedresponserate)Retailerlevel,maximumoneretailerperuserOtherfactorsOptimizationBalancebetweenmultipleobjectivesandconstraintsTextbookoptimizationproblemLargescalelinear/quadraticprogrammingmodelTheFinalProduct:ConsumerexperienceRegularlyusingcreditcardReceivedamessageaboutastore-specificcoupon:EmailWebMobileGeo-fencingNeedtouseinoneortwoweeksTransactionhappenasusualDiscountappliedoncreditcardstatementTheFinalProduct:MerchantExperienceRunaspecificpromotionprogramNotraininginvolvedEngagedcustomerscomeforpurchasesTheFinalProduct:BankExperienceDatasharingReceivedataandsendoffersouttoconsumersReceiveshareofrevenueFastForward3years…BanksMerchantsConsumersWe’rehereInvestorsWhereweareSiliconValleybased50+employeesfromGoogle,Visa,Yahooetc.3roundsof$50M+VCfundraised100+clients,10M+usersAccuratepredictiononconsumerbehaviororotherwiseHighlytargetedpromotionaloffersfromrelevantretailersWhatcouldgowrong?MeetwithReality–technologyBalancebetweenmultipleobjectivesandconstraintsMaximizetotalrevenuewhilekeepingresponserate>=x%Maximizeoverallresponseratewhilekeepingtotalrevenue>=$XMaximizetotalredemptionvolumewhilekeepingrevenue>=$XHowtobalance?N-1Constraints,1objectivefunctionLinearcombinationofobjectivesMeetwithReality–technologyCustomizedcomplexmodelsTakeshourstofinishInfeasiblestatesolutionaddapre-optimizationprocesstoevaluate(rough)feasibilitywithoutactuallygettingasolutionMeetwithReality–technologyRealdataisdifferentfromlabsimulationExample:RedemptionratealothigherthanorganicbehaviorSpendamountoncouponredemptionisverydifferenttooModelneedtohaveroomforsuchadjustmentsOverall,wehaveahighperformingproductwithhighaccuracypredictionandoptimizednetworkyieldMeetwithReality–BusinessModelCooperativePartnersareextremelyimportantBanks,merchants,investors,andconsumersAllcomponentsHASTOWORK!Significantchallengesduringproductdevelopment,launchandbusinessdevelopmentMeetwithReality–BanksRegulationsSpeedinproductdevelopmentDatasharing/pipeline,frequencyLevelofdatadetails,itemspurchasedCommunicationstoconsumersExclusiverelationshipMeetwithReality–MerchantsRegulations:tobacco,medicine,etc.ProductspecificpromotionsDouble-dippingAdoptionofnewtechnolog
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2026年財(cái)會(huì)領(lǐng)域財(cái)務(wù)主管晉級(jí)財(cái)務(wù)經(jīng)理題目與解析
- 2026年網(wǎng)絡(luò)編程基礎(chǔ)與實(shí)戰(zhàn)認(rèn)證試題
- 2026年社交媒體營銷策略社交平臺(tái)運(yùn)營與推廣專業(yè)測(cè)試題
- 2026年緊急救援隊(duì)伍協(xié)調(diào)配合與聯(lián)動(dòng)機(jī)制練習(xí)題
- 2026年宏觀經(jīng)濟(jì)分析政策影響預(yù)測(cè)經(jīng)濟(jì)趨勢(shì)預(yù)測(cè)題
- 2026年新能源技術(shù)與應(yīng)用開發(fā)工程師認(rèn)證題集
- 2026年初級(jí)人力資源管理師職業(yè)資格考試練習(xí)題
- 2026年環(huán)境科學(xué)考試環(huán)境污染控制知識(shí)題庫
- 2026年邏輯思維訓(xùn)練推理分析與應(yīng)用題集
- 2026年軟件編程基礎(chǔ)及算法應(yīng)用題集
- 2026云南昆明市公共交通有限責(zé)任公司總部職能部門員工遴選48人筆試模擬試題及答案解析
- 2025至2030中國數(shù)字經(jīng)濟(jì)產(chǎn)業(yè)發(fā)展現(xiàn)狀及未來趨勢(shì)分析報(bào)告
- 上海市松江區(qū)2025-2026學(xué)年八年級(jí)(上)期末化學(xué)試卷(含答案)
- 導(dǎo)管室護(hù)理新技術(shù)
- 中國信通服務(wù):2025算力運(yùn)維體系技術(shù)白皮書
- 2026年焦作大學(xué)單招試題附答案
- 電力行業(yè)五新技術(shù)知識(shí)點(diǎn)梳理
- 《DLT 849.1-2004電力設(shè)備專用測(cè)試儀器通 用技術(shù)條件 第1部分:電纜故障閃測(cè)儀》專題研究報(bào)告 深度
- 餐飲業(yè)店長運(yùn)營效率考核表
- 超市安全生產(chǎn)協(xié)議書
- 福建省漳州市2024-2025學(xué)年八年級(jí)上學(xué)期期末考試數(shù)學(xué)試卷(北師大版A卷)(含詳解)
評(píng)論
0/150
提交評(píng)論