河北保定清苑中學(xué)2024屆高三兩校聯(lián)考數(shù)學(xué)試題_第1頁(yè)
河北保定清苑中學(xué)2024屆高三兩校聯(lián)考數(shù)學(xué)試題_第2頁(yè)
河北保定清苑中學(xué)2024屆高三兩校聯(lián)考數(shù)學(xué)試題_第3頁(yè)
河北保定清苑中學(xué)2024屆高三兩校聯(lián)考數(shù)學(xué)試題_第4頁(yè)
河北保定清苑中學(xué)2024屆高三兩校聯(lián)考數(shù)學(xué)試題_第5頁(yè)
已閱讀5頁(yè),還剩13頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

河北保定清苑中學(xué)2023屆高三兩校聯(lián)考數(shù)學(xué)試題考生請(qǐng)注意:1.答題前請(qǐng)將考場(chǎng)、試室號(hào)、座位號(hào)、考生號(hào)、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號(hào)內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知函,,則的最小值為()A. B.1 C.0 D.2.展開項(xiàng)中的常數(shù)項(xiàng)為A.1 B.11 C.-19 D.513.正項(xiàng)等比數(shù)列中的、是函數(shù)的極值點(diǎn),則()A. B.1 C. D.24.已知集合,則集合()A. B. C. D.5.設(shè)變量滿足約束條件,則目標(biāo)函數(shù)的最大值是()A.7 B.5 C.3 D.26.關(guān)于圓周率,數(shù)學(xué)發(fā)展史上出現(xiàn)過(guò)許多很有創(chuàng)意的求法,如著名的蒲豐實(shí)驗(yàn)和查理斯實(shí)驗(yàn).受其啟發(fā),某同學(xué)通過(guò)下面的隨機(jī)模擬方法來(lái)估計(jì)的值:先用計(jì)算機(jī)產(chǎn)生個(gè)數(shù)對(duì),其中,都是區(qū)間上的均勻隨機(jī)數(shù),再統(tǒng)計(jì),能與構(gòu)成銳角三角形三邊長(zhǎng)的數(shù)對(duì)的個(gè)數(shù)﹔最后根據(jù)統(tǒng)計(jì)數(shù)來(lái)估計(jì)的值.若,則的估計(jì)值為()A. B. C. D.7.若復(fù)數(shù)(是虛數(shù)單位),則復(fù)數(shù)在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限8.已知是虛數(shù)單位,若,則()A. B.2 C. D.39.棱長(zhǎng)為2的正方體內(nèi)有一個(gè)內(nèi)切球,過(guò)正方體中兩條異面直線,的中點(diǎn)作直線,則該直線被球面截在球內(nèi)的線段的長(zhǎng)為()A. B. C. D.110.已知集合.為自然數(shù)集,則下列表示不正確的是()A. B. C. D.11.若函數(shù)有兩個(gè)極值點(diǎn),則實(shí)數(shù)的取值范圍是()A. B. C. D.12.已知函數(shù)是定義在R上的奇函數(shù),且滿足,當(dāng)時(shí),(其中e是自然對(duì)數(shù)的底數(shù)),若,則實(shí)數(shù)a的值為()A. B.3 C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知函數(shù)在處的切線與直線平行,則為________.14.在平面直角坐標(biāo)系中,點(diǎn)P在直線上,過(guò)點(diǎn)P作圓C:的一條切線,切點(diǎn)為T.若,則的長(zhǎng)是______.15.已知函數(shù),則曲線在點(diǎn)處的切線方程是_______.16.已知函數(shù),在區(qū)間上隨機(jī)取一個(gè)數(shù),則使得≥0的概率為.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)如圖,三棱臺(tái)中,側(cè)面與側(cè)面是全等的梯形,若,且.(Ⅰ)若,,證明:∥平面;(Ⅱ)若二面角為,求平面與平面所成的銳二面角的余弦值.18.(12分)已知.(Ⅰ)若,求不等式的解集;(Ⅱ),,,求實(shí)數(shù)的取值范圍.19.(12分)設(shè)實(shí)數(shù)滿足.(1)若,求的取值范圍;(2)若,,求證:.20.(12分)設(shè)的內(nèi)角、、的對(duì)邊長(zhǎng)分別為、、.設(shè)為的面積,滿足.(1)求;(2)若,求的最大值.21.(12分)在直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù),將曲線經(jīng)過(guò)伸縮變換后得到曲線.在以原點(diǎn)為極點(diǎn),軸正半軸為極軸的極坐標(biāo)系中,直線的極坐標(biāo)方程為.(1)說(shuō)明曲線是哪一種曲線,并將曲線的方程化為極坐標(biāo)方程;(2)已知點(diǎn)是曲線上的任意一點(diǎn),又直線上有兩點(diǎn)和,且,又點(diǎn)的極角為,點(diǎn)的極角為銳角.求:①點(diǎn)的極角;②面積的取值范圍.22.(10分)在平面直角坐標(biāo)系中,為直線上動(dòng)點(diǎn),過(guò)點(diǎn)作拋物線:的兩條切線,,切點(diǎn)分別為,,為的中點(diǎn).(1)證明:軸;(2)直線是否恒過(guò)定點(diǎn)?若是,求出這個(gè)定點(diǎn)的坐標(biāo);若不是,請(qǐng)說(shuō)明理由.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.B【解析】

,利用整體換元法求最小值.【詳解】由已知,又,,故當(dāng),即時(shí),.故選:B.【點(diǎn)睛】本題考查整體換元法求正弦型函數(shù)的最值,涉及到二倍角公式的應(yīng)用,是一道中檔題.2.B【解析】

展開式中的每一項(xiàng)是由每個(gè)括號(hào)中各出一項(xiàng)組成的,所以可分成三種情況.【詳解】展開式中的項(xiàng)為常數(shù)項(xiàng),有3種情況:(1)5個(gè)括號(hào)都出1,即;(2)兩個(gè)括號(hào)出,兩個(gè)括號(hào)出,一個(gè)括號(hào)出1,即;(3)一個(gè)括號(hào)出,一個(gè)括號(hào)出,三個(gè)括號(hào)出1,即;所以展開項(xiàng)中的常數(shù)項(xiàng)為,故選B.【點(diǎn)睛】本題考查二項(xiàng)式定理知識(shí)的生成過(guò)程,考查定理的本質(zhì),即展開式中每一項(xiàng)是由每個(gè)括號(hào)各出一項(xiàng)相乘組合而成的.3.B【解析】

根據(jù)可導(dǎo)函數(shù)在極值點(diǎn)處的導(dǎo)數(shù)值為,得出,再由等比數(shù)列的性質(zhì)可得.【詳解】解:依題意、是函數(shù)的極值點(diǎn),也就是的兩個(gè)根∴又是正項(xiàng)等比數(shù)列,所以∴.故選:B【點(diǎn)睛】本題主要考查了等比數(shù)列下標(biāo)和性質(zhì)以應(yīng)用,屬于中檔題.4.D【解析】

弄清集合B的含義,它的元素x來(lái)自于集合A,且也是集合A的元素.【詳解】因,所以,故,又,,則,故集合.故選:D.【點(diǎn)睛】本題考查集合的定義,涉及到解絕對(duì)值不等式,是一道基礎(chǔ)題.5.B【解析】

由約束條件作出可行域,化目標(biāo)函數(shù)為直線方程的斜截式,數(shù)形結(jié)合得到最優(yōu)解,聯(lián)立方程組求得最優(yōu)解的坐標(biāo),把最優(yōu)解的坐標(biāo)代入目標(biāo)函數(shù)得結(jié)論.【詳解】畫出約束條件,表示的可行域,如圖,由可得,將變形為,平移直線,由圖可知當(dāng)直經(jīng)過(guò)點(diǎn)時(shí),直線在軸上的截距最大,最大值為,故選B.【點(diǎn)睛】本題主要考查線性規(guī)劃中,利用可行域求目標(biāo)函數(shù)的最值,屬于簡(jiǎn)單題.求目標(biāo)函數(shù)最值的一般步驟是“一畫、二移、三求”:(1)作出可行域(一定要注意是實(shí)線還是虛線);(2)找到目標(biāo)函數(shù)對(duì)應(yīng)的最優(yōu)解對(duì)應(yīng)點(diǎn)(在可行域內(nèi)平移變形后的目標(biāo)函數(shù),最先通過(guò)或最后通過(guò)的頂點(diǎn)就是最優(yōu)解);(3)將最優(yōu)解坐標(biāo)代入目標(biāo)函數(shù)求出最值.6.B【解析】

先利用幾何概型的概率計(jì)算公式算出,能與構(gòu)成銳角三角形三邊長(zhǎng)的概率,然后再利用隨機(jī)模擬方法得到,能與構(gòu)成銳角三角形三邊長(zhǎng)的概率,二者概率相等即可估計(jì)出.【詳解】因?yàn)?,都是區(qū)間上的均勻隨機(jī)數(shù),所以有,,若,能與構(gòu)成銳角三角形三邊長(zhǎng),則,由幾何概型的概率計(jì)算公式知,所以.故選:B.【點(diǎn)睛】本題考查幾何概型的概率計(jì)算公式及運(yùn)用隨機(jī)數(shù)模擬法估計(jì)概率,考查學(xué)生的基本計(jì)算能力,是一個(gè)中檔題.7.A【解析】

將整理成的形式,得到復(fù)數(shù)所對(duì)應(yīng)的的點(diǎn),從而可選出所在象限.【詳解】解:,所以所對(duì)應(yīng)的點(diǎn)為在第一象限.故選:A.【點(diǎn)睛】本題考查了復(fù)數(shù)的乘法運(yùn)算,考查了復(fù)數(shù)對(duì)應(yīng)的坐標(biāo).易錯(cuò)點(diǎn)是誤把當(dāng)成進(jìn)行計(jì)算.8.A【解析】

直接將兩邊同時(shí)乘以求出復(fù)數(shù),再求其模即可.【詳解】解:將兩邊同時(shí)乘以,得故選:A【點(diǎn)睛】考查復(fù)數(shù)的運(yùn)算及其模的求法,是基礎(chǔ)題.9.C【解析】

連結(jié)并延長(zhǎng)PO,交對(duì)棱C1D1于R,則R為對(duì)棱的中點(diǎn),取MN的中點(diǎn)H,則OH⊥MN,推導(dǎo)出OH∥RQ,且OH=RQ=,由此能求出該直線被球面截在球內(nèi)的線段的長(zhǎng).【詳解】如圖,MN為該直線被球面截在球內(nèi)的線段連結(jié)并延長(zhǎng)PO,交對(duì)棱C1D1于R,則R為對(duì)棱的中點(diǎn),取MN的中點(diǎn)H,則OH⊥MN,∴OH∥RQ,且OH=RQ=,∴MH===,∴MN=.故選:C.【點(diǎn)睛】本題主要考查該直線被球面截在球內(nèi)的線段的長(zhǎng)的求法,考查空間中線線、線面、面面間的位置關(guān)系等基礎(chǔ)知識(shí),考查運(yùn)算求解能力,是中檔題.10.D【解析】

集合.為自然數(shù)集,由此能求出結(jié)果.【詳解】解:集合.為自然數(shù)集,在A中,,正確;在B中,,正確;在C中,,正確;在D中,不是的子集,故D錯(cuò)誤.故選:D.【點(diǎn)睛】本題考查命題真假的判斷、元素與集合的關(guān)系、集合與集合的關(guān)系等基礎(chǔ)知識(shí),考查運(yùn)算求解能力,是基礎(chǔ)題.11.A【解析】試題分析:由題意得有兩個(gè)不相等的實(shí)數(shù)根,所以必有解,則,且,∴.考點(diǎn):利用導(dǎo)數(shù)研究函數(shù)極值點(diǎn)【方法點(diǎn)睛】函數(shù)極值問(wèn)題的常見(jiàn)類型及解題策略(1)知圖判斷函數(shù)極值的情況.先找導(dǎo)數(shù)為0的點(diǎn),再判斷導(dǎo)數(shù)為0的點(diǎn)的左、右兩側(cè)的導(dǎo)數(shù)符號(hào).(2)已知函數(shù)求極值.求f′(x)―→求方程f′(x)=0的根―→列表檢驗(yàn)f′(x)在f′(x)=0的根的附近兩側(cè)的符號(hào)―→下結(jié)論.(3)已知極值求參數(shù).若函數(shù)f(x)在點(diǎn)(x0,y0)處取得極值,則f′(x0)=0,且在該點(diǎn)左、右兩側(cè)的導(dǎo)數(shù)值符號(hào)相反.12.B【解析】

根據(jù)題意,求得函數(shù)周期,利用周期性和函數(shù)值,即可求得.【詳解】由已知可知,,所以函數(shù)是一個(gè)以4為周期的周期函數(shù),所以,解得,故選:B.【點(diǎn)睛】本題考查函數(shù)周期的求解,涉及對(duì)數(shù)運(yùn)算,屬綜合基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】

根據(jù)題意得出,由此可得出實(shí)數(shù)的值.【詳解】,,直線的斜率為,由于函數(shù)在處的切線與直線平行,則.故答案為:.【點(diǎn)睛】本題考查利用函數(shù)的切線與直線平行求參數(shù),解題時(shí)要結(jié)合兩直線的位置關(guān)系得出兩直線斜率之間的關(guān)系,考查計(jì)算能力,屬于基礎(chǔ)題.14.【解析】

作出圖像,設(shè)點(diǎn),根據(jù)已知可得,,且,可解出,計(jì)算即得.【詳解】如圖,設(shè),圓心坐標(biāo)為,可得,,,,,解得,,即的長(zhǎng)是.故答案為:【點(diǎn)睛】本題考查直線與圓的位置關(guān)系,以及求平面兩點(diǎn)間的距離,運(yùn)用了數(shù)形結(jié)合的思想.15.【解析】

求導(dǎo),x=0代入求k,點(diǎn)斜式求切線方程即可【詳解】則又故切線方程為y=x+1故答案為y=x+1【點(diǎn)睛】本題考查切線方程,求導(dǎo)法則及運(yùn)算,考查直線方程,考查計(jì)算能力,是基礎(chǔ)題16.【解析】試題分析:可以得出,所以在區(qū)間上使的范圍為,所以使得≥0的概率為考點(diǎn):本小題主要考查與長(zhǎng)度有關(guān)的幾何概型的概率計(jì)算.點(diǎn)評(píng):幾何概型適用于解決一切均勻分布的問(wèn)題,包括“長(zhǎng)度”、“角度”、“面積”、“體積”等,但要注意求概率時(shí)做比的上下“測(cè)度”要一致.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(Ⅰ)見(jiàn)解析;(Ⅱ).【解析】試題分析:(Ⅰ)連接,由比例可得∥,進(jìn)而得線面平行;(Ⅱ)過(guò)點(diǎn)作的垂線,建立空間直角坐標(biāo)系,不妨設(shè),則求得平面的法向量為,設(shè)平面的法向量為,由求二面角余弦即可.試題解析:(Ⅰ)證明:連接,梯形,,易知:;又,則∥;平面,平面,可得:∥平面;(Ⅱ)側(cè)面是梯形,,,,則為二面角的平面角,;均為正三角形,在平面內(nèi),過(guò)點(diǎn)作的垂線,如圖建立空間直角坐標(biāo)系,不妨設(shè),則,故點(diǎn),;設(shè)平面的法向量為,則有:;設(shè)平面的法向量為,則有:;,故平面與平面所成的銳二面角的余弦值為.18.(Ⅰ);(Ⅱ).【解析】

(Ⅰ)利用零點(diǎn)分段討論法把函數(shù)改寫成分段函數(shù)的形式,分三種情況分別解不等式,然后取并集即可;(Ⅱ)利用絕對(duì)值三角不等式求出的最小值,利用均值不等式求出的最小值,結(jié)合題意,只需即可,解不等式即可求解.【詳解】(Ⅰ)當(dāng)時(shí),,,或,或,或所以不等式的解集為;(Ⅱ)因?yàn)?,又(?dāng)時(shí)等號(hào)成立),依題意,,,有,則,解之得,故實(shí)數(shù)的取值范圍是.【點(diǎn)睛】本題考查由存在性問(wèn)題求參數(shù)的范圍、零點(diǎn)分段討論法解絕對(duì)值不等式、利用絕對(duì)值三角不等式和均值不等式求最值;考查運(yùn)算求解能力、分類討論思想、邏輯推理能力;屬于中檔題.19.(1)(2)證明見(jiàn)解析【解析】

(1)依題意可得,考慮到,則有再分類討論可得;(2)要證明,即證,即證.利用基本不等式即可得證;【詳解】解:(1)由及,得,考慮到,則有,它可化為或即或前者無(wú)解,后者的解集為,綜上,的取值范圍是.(2)要證明,即證,由,得,即證.因?yàn)椋ó?dāng)且僅當(dāng),時(shí)取等號(hào)).所以成立,故成立.【點(diǎn)睛】本題考查分類討論法解絕對(duì)值不等式,基本不等式的應(yīng)用,屬于中檔題.20.(1);(2).【解析】

(1)根據(jù)條件形式選擇,然后利用余弦定理和正弦定理化簡(jiǎn),即可求出;(2)由(1)求出角,利用正弦定理和消元思想,可分別用角的三角函數(shù)值表示出,即可得到,再利用三角恒等變換,化簡(jiǎn)為,即可求出最大值.【詳解】(1)∵,即,∴變形得:,整理得:,又,∴;(2)∵,∴,由正弦定理知,,∴,當(dāng)且僅當(dāng)時(shí)取最大值.故的最大值為.【點(diǎn)睛】本題主要考查正弦定理,余弦定理,三角形面積公式的應(yīng)用,以及利用三角恒等變換求函數(shù)的最值,意在考查學(xué)生的轉(zhuǎn)化能力和數(shù)學(xué)運(yùn)算能力,屬于基礎(chǔ)題21.(1)曲線為圓心在原點(diǎn),半徑為2的圓.的極坐標(biāo)方程為(2)①②【解析】

(1)求得曲線伸縮變換后所得的參數(shù)方程,消參后求得的普通方程,判斷出對(duì)應(yīng)的曲線,并將的普通方程轉(zhuǎn)化為極坐標(biāo)方程.(2)①將的極角代入直線的極坐標(biāo)方程,由此求得點(diǎn)的極徑,判斷出為等腰三角形,求得直線的普通方程,由此求得,進(jìn)而求得,從而求得點(diǎn)的極角.②解法一:利用曲線的參數(shù)方程,求得曲線上的點(diǎn)到直線的距離的表達(dá)式,結(jié)合三角函數(shù)的知識(shí)求得的最小值和最大值,由此求得面積的取值范圍.解法二:根據(jù)曲線表示的曲線,利用圓的幾何性質(zhì)求得圓上的點(diǎn)到直線的距離的最大值和最小值,進(jìn)而求得面積的取值范圍.【詳解】(1)因?yàn)榍€的參數(shù)方程為(為參數(shù)),因?yàn)閯t曲線的參數(shù)方程所以的普通方程為.所以曲線為圓心在原點(diǎn),半徑為2的圓.所以的極坐標(biāo)方程為,即.(2)①點(diǎn)的極角為,代入直線的極坐標(biāo)方程得點(diǎn)極徑為,且,所以為等腰三角形,又直線的普通方程為,又點(diǎn)的極角為銳角,所以,所以,所以點(diǎn)的極角為.②解法1:直線的普通方程為.曲線上的點(diǎn)到直線的距離.當(dāng),即()時(shí),取到最小值為.當(dāng),即()時(shí),取到最大值為.所以面積的最大值為;所以面積的最小值為;故面積的取值范圍.解法2:直線的普通方程為.因?yàn)閳A的半徑為2,且圓心到直線的距離,因?yàn)?,所以圓與直線相離.所以圓上的點(diǎn)到直線的距離最大值為,最小值為.所以面積的最大值為;所以面積的最小值為;故面積的取值范圍.【點(diǎn)睛】本小題考查坐標(biāo)變換,極徑與極角;直線,圓的極坐標(biāo)方程,圓的參數(shù)方程,直線的極坐標(biāo)方程與普通方程,點(diǎn)到直線的距離等.考查數(shù)學(xué)運(yùn)算能力,包括運(yùn)算原理的理解與應(yīng)用、運(yùn)算方法的選擇與優(yōu)化、運(yùn)算結(jié)果的檢驗(yàn)與改進(jìn)等.也兼考了數(shù)學(xué)抽象素養(yǎng)、

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論