版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
河北省保定市徐水區(qū)2023屆高三第三次(4月)聯(lián)考數(shù)學試題試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.一個正方體被一個平面截去一部分后,剩余部分的三視圖如下圖,則截去部分體積與剩余部分體積的比值為()A. B. C. D.2.已知銳角滿足則()A. B. C. D.3.已知角的終邊經(jīng)過點,則的值是A.1或 B.或 C.1或 D.或4.已知函數(shù),其中,記函數(shù)滿足條件:為事件,則事件發(fā)生的概率為A. B.C. D.5.已知復數(shù)是正實數(shù),則實數(shù)的值為()A. B. C. D.6.已知隨機變量X的分布列如下表:X01Pabc其中a,b,.若X的方差對所有都成立,則()A. B. C. D.7.設,滿足約束條件,則的最大值是()A. B. C. D.8.若,,,則下列結(jié)論正確的是()A. B. C. D.9.執(zhí)行如圖所示的程序框圖,若輸出的,則輸入的整數(shù)的最大值為()A.7 B.15 C.31 D.6310.若的展開式中的常數(shù)項為-12,則實數(shù)的值為()A.-2 B.-3 C.2 D.311.如圖,四邊形為正方形,延長至,使得,點在線段上運動.設,則的取值范圍是()A. B. C. D.12.“”是“函數(shù)的圖象關(guān)于直線對稱”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件二、填空題:本題共4小題,每小題5分,共20分。13.根據(jù)如圖的算法,輸出的結(jié)果是_________.14.已知函數(shù),則函數(shù)的極大值為___________.15.安排名男生和名女生參與完成項工作,每人參與一項,每項工作至少由名男生和名女生完成,則不同的安排方式共有________種(用數(shù)字作答).16.已知點是拋物線的準線上一點,F(xiàn)為拋物線的焦點,P為拋物線上的點,且,若雙曲線C中心在原點,F(xiàn)是它的一個焦點,且過P點,當m取最小值時,雙曲線C的離心率為______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)某房地產(chǎn)開發(fā)商在其開發(fā)的某小區(qū)前修建了一個弓形景觀湖.如圖,該弓形所在的圓是以為直徑的圓,且米,景觀湖邊界與平行且它們間的距離為米.開發(fā)商計劃從點出發(fā)建一座景觀橋(假定建成的景觀橋的橋面與地面和水面均平行),橋面在湖面上的部分記作.設.(1)用表示線段并確定的范圍;(2)為了使小區(qū)居民可以充分地欣賞湖景,所以要將的長度設計到最長,求的最大值.18.(12分)已知二階矩陣A=abcd,矩陣A屬于特征值λ1=-1的一個特征向量為α119.(12分)已知的內(nèi)角的對邊分別為,且滿足.(1)求角的大小;(2)若的面積為,求的周長的最小值.20.(12分)已知橢圓的右焦點為,離心率為.(1)若,求橢圓的方程;(2)設直線與橢圓相交于、兩點,、分別為線段、的中點,若坐標原點在以為直徑的圓上,且,求的取值范圍.21.(12分)如圖,在四棱錐中,平面平面ABCD,,,底面ABCD是邊長為2的菱形,點E,F(xiàn)分別為棱DC,BC的中點,點G是棱SC靠近點C的四等分點.求證:(1)直線平面EFG;(2)直線平面SDB.22.(10分)已知等差數(shù)列中,,數(shù)列的前項和.(1)求;(2)若,求的前項和.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.D【解析】
試題分析:如圖所示,截去部分是正方體的一個角,其體積是正方體體積的,剩余部分體積是正方體體積的,所以截去部分體積與剩余部分體積的比值為,故選D.考點:本題主要考查三視圖及幾何體體積的計算.2.C【解析】
利用代入計算即可.【詳解】由已知,,因為銳角,所以,,即.故選:C.【點睛】本題考查二倍角的正弦、余弦公式的應用,考查學生的運算能力,是一道基礎題.3.B【解析】
根據(jù)三角函數(shù)的定義求得后可得結(jié)論.【詳解】由題意得點與原點間的距離.①當時,,∴,∴.②當時,,∴,∴.綜上可得的值是或.故選B.【點睛】利用三角函數(shù)的定義求一個角的三角函數(shù)值時需確定三個量:角的終邊上任意一個異于原點的點的橫坐標x,縱坐標y,該點到原點的距離r,然后再根據(jù)三角函數(shù)的定義求解即可.4.D【解析】
由得,分別以為橫縱坐標建立如圖所示平面直角坐標系,由圖可知,.5.C【解析】
將復數(shù)化成標準形式,由題意可得實部大于零,虛部等于零,即可得到答案.【詳解】因為為正實數(shù),所以且,解得.故選:C【點睛】本題考查復數(shù)的基本定義,屬基礎題.6.D【解析】
根據(jù)X的分布列列式求出期望,方差,再利用將方差變形為,從而可以利用二次函數(shù)的性質(zhì)求出其最大值為,進而得出結(jié)論.【詳解】由X的分布列可得X的期望為,又,所以X的方差,因為,所以當且僅當時,取最大值,又對所有成立,所以,解得,故選:D.【點睛】本題綜合考查了隨機變量的期望?方差的求法,結(jié)合了概率?二次函數(shù)等相關(guān)知識,需要學生具備一定的計算能力,屬于中檔題.7.D【解析】
作出不等式對應的平面區(qū)域,由目標函數(shù)的幾何意義,通過平移即可求z的最大值.【詳解】作出不等式組的可行域,如圖陰影部分,作直線:在可行域內(nèi)平移當過點時,取得最大值.由得:,故選:D【點睛】本題主要考查線性規(guī)劃的應用,利用數(shù)形結(jié)合是解決線性規(guī)劃題目的常用方法,屬于基礎題.8.D【解析】
根據(jù)指數(shù)函數(shù)的性質(zhì),取得的取值范圍,即可求解,得到答案.【詳解】由指數(shù)函數(shù)的性質(zhì),可得,即,又由,所以.故選:D.【點睛】本題主要考查了指數(shù)冪的比較大小,其中解答中熟記指數(shù)函數(shù)的性質(zhì),求得的取值范圍是解答的關(guān)鍵,著重考查了計算能力,屬于基礎題.9.B【解析】試題分析:由程序框圖可知:①,;②,;③,;④,;⑤,.第⑤步后輸出,此時,則的最大值為15,故選B.考點:程序框圖.10.C【解析】
先研究的展開式的通項,再分中,取和兩種情況求解.【詳解】因為的展開式的通項為,所以的展開式中的常數(shù)項為:,解得,故選:C.【點睛】本題主要考查二項式定理的通項公式,還考查了運算求解的能力,屬于基礎題.11.C【解析】
以為坐標原點,以分別為x軸,y軸建立直角坐標系,利用向量的坐標運算計算即可解決.【詳解】以為坐標原點建立如圖所示的直角坐標系,不妨設正方形的邊長為1,則,,設,則,所以,且,故.故選:C.【點睛】本題考查利用向量的坐標運算求變量的取值范圍,考查學生的基本計算能力,本題的關(guān)鍵是建立適當?shù)闹苯亲鴺讼?,是一道基礎題.12.A【解析】
先求解函數(shù)的圖象關(guān)于直線對稱的等價條件,得到,分析即得解.【詳解】若函數(shù)的圖象關(guān)于直線對稱,則,解得,故“”是“函數(shù)的圖象關(guān)于直線對稱”的充分不必要條件.故選:A【點睛】本題考查了充分不必要條件的判斷,考查了學生邏輯推理,概念理解,數(shù)學運算的能力,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13.55【解析】
根據(jù)該For語句的功能,可得,可得結(jié)果【詳解】根據(jù)該For語句的功能,可得則故答案為:55【點睛】本題考查For語句的功能,屬基礎題.14.【解析】
對函數(shù)求導,通過賦值,求得,再對函數(shù)單調(diào)性進行分析,求得極大值.【詳解】,故解得,,令,解得函數(shù)在單調(diào)遞增,在單調(diào)遞減,故的極大值為故答案為:.【點睛】本題考查函數(shù)極值的求解,難點是要通過賦值,求出未知量.15.1296【解析】
先從4個男生選2個一組,將4人分成三組,然后從4個女生選2個一組,將4人分成三組,然后全排列即可.【詳解】由于每項工作至少由名男生和名女生完成,則先從4個男生選2個一組,將4人分成三組,所以男生的排法共有,同理女生的排法共有,故不同的安排共有種.故答案為:1296【點睛】本題主要考查了排列組合的應用,考查了學生應用數(shù)學解決實際問題的能力.16.【解析】
由點坐標可確定拋物線方程,由此得到坐標和準線方程;過作準線的垂線,垂足為,根據(jù)拋物線定義可得,可知當直線與拋物線相切時,取得最小值;利用拋物線切線的求解方法可求得點坐標,根據(jù)雙曲線定義得到實軸長,結(jié)合焦距可求得所求的離心率.【詳解】是拋物線準線上的一點拋物線方程為,準線方程為過作準線的垂線,垂足為,則設直線的傾斜角為,則當取得最小值時,最小,此時直線與拋物線相切設直線的方程為,代入得:,解得:或雙曲線的實軸長為,焦距為雙曲線的離心率故答案為:【點睛】本題考查雙曲線離心率的求解問題,涉及到拋物線定義和標準方程的應用、雙曲線定義的應用;關(guān)鍵是能夠確定當取得最小值時,直線與拋物線相切,進而根據(jù)拋物線切線方程的求解方法求得點坐標.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1),;(2)米.【解析】
(1)過點作于點再在中利用正弦定理求解,再根據(jù)求解,進而求得.再根據(jù)確定的范圍即可.(2)根據(jù)(1)有,再設,求導分析函數(shù)的單調(diào)性與最值即可.【詳解】解:過點作于點則,在中,,,由正弦定理得:,,,,,因為,化簡得,令,,且,因為,故令即,記,當時,單調(diào)遞增;當時,單調(diào)遞減,又,當時,取最大值,此時,的最大值為米.【點睛】本題主要考查了三角函數(shù)在實際中的應用,需要根據(jù)題意建立角度與長度間的關(guān)系,進而求導分析函數(shù)的單調(diào)性,根據(jù)三角函數(shù)值求解對應的最值即可.屬于難題.18.A=【解析】
運用矩陣定義列出方程組求解矩陣A【詳解】由特征值、特征向量定義可知,Aα即abc同理可得3a+2b=12,3c+2d=8.解得a=2,b=3,c=2,d=1.因此矩陣【點睛】本題考查了由矩陣特征值和特征向量求矩陣,只需運用定義得出方程組即可求出結(jié)果,較為簡單19.(1)(2)【解析】
(1)因為,所以,由余弦定理得,化簡得,可得,解得,又因為,所以.(6分)(2)因為,所以,則(當且僅當時,取等號).由(1)得(當且僅當時,取等號),解得.所以(當且僅當時,取等號),所以的周長的最小值為.20.(1);(2).【解析】
(1)由橢圓的離心率求出、的值,由此可求得橢圓的方程;(2)設點、,聯(lián)立直線與橢圓的方程,列出韋達定理,由題意得出,可得出,【詳解】(1)由題意得,,.又因為,,所以橢圓的方程為;(2)由,得.設、,所以,,依題意,,易知,四邊形為平行四邊形,所以.因為,,所以.即,將其整理為.因為,所以,.所以,即.【點睛】本題考查橢圓方程的求法和直線與橢圓位置關(guān)系的綜合運用,解題時要認真審題,注意挖掘題設中的隱含條件,合理地進行等價轉(zhuǎn)化,考查計算能力,屬于中等題.21.(1)見解析(2)見解析【解析】
(1)連接AC、BD交于點O,交EF于點H,連接GH,再證明即可.(2)證明與即可.【詳解】(1)連接AC、BD交于點O,交EF于點H,連接GH,所以O為AC的中點,H為OC的中點,由E、F為DC、BC的中點,再由題意可得,所以在三角形CAS中,平面EFG,平面EFG,所以直線平面EFG.(2)在中,,,,由余弦定理得,,即,解得,由勾股定理逆定理可知,因為側(cè)面底面ABCD,由面面垂直的性質(zhì)定理可知平面ABCD,所以,因為底面ABCD是菱形,所以,因為,所以平面SDB.【點睛】本題考查線面平行與垂直的證明.需要根據(jù)題意利用等比例以及余弦定理勾
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年泉州市金淘鎮(zhèn)衛(wèi)生院編外人員招聘備考題庫及答案詳解1套
- 安徽省領(lǐng)航水下工程技術(shù)研發(fā)有限公司2025年度第三批次招聘備考題庫(二次)及1套參考答案詳解
- 2025年湖南鹽業(yè)集團有限公司所屬企業(yè)公開招聘18人備考題庫完整答案詳解
- 2025年西安交通大學材料學院特聘教授秘書招聘備考題庫完整參考答案詳解
- 涼州區(qū)從2026屆小學全科型教師培養(yǎng)計劃畢業(yè)生中公開招聘事業(yè)單位工作人員備考題庫有答案詳解
- 2025年中信建投證券海南分公司校園招聘備考題庫及一套參考答案詳解
- 2025年湖州莫干山國有資本控股集團有限公司招聘工作人員備考題庫及一套完整答案詳解
- 2025年杭州市西湖區(qū)政府直屬國有企業(yè)招聘備考題庫完整參考答案詳解
- 2025年浙江浙商融資租賃有限公司招聘備考題庫完整答案詳解
- 2025年貴州關(guān)嶺自治縣縣域醫(yī)療次中心花江鎮(zhèn)衛(wèi)生院鄉(xiāng)村醫(yī)生招聘備考題庫含答案詳解
- 【《銅電解陽極泥處理各工序及工藝分析案例》7400字】
- 第五課 共同保衛(wèi)偉大祖國 課件-《中華民族大團結(jié)》七年級全一冊
- 車間安全生產(chǎn)獎懲制度
- 化工設備新員工培訓課件
- 分包工程監(jiān)理方案(3篇)
- 2025北師大版暑假八升九年級數(shù)學銜接講義 第04講 因式分解(思維導圖+3知識點+8考點+復習提升)(原卷)
- 全面解讀產(chǎn)后各種疼痛
- 行政單位預算管理課件
- 文化創(chuàng)意產(chǎn)品設計及案例全套教學課件
- 2025年高考歷史(北京卷)真題評析
- 奔馳GL350GL450GL550中文版說明書
評論
0/150
提交評論