版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
PAGEPAGE1課時訓(xùn)練(二十七)與圓有關(guān)的計算(限時:45分鐘)|夯實基礎(chǔ)|1.[2019·溫州]若扇形的圓心角為90°,半徑為6,則該扇形的弧長為 ()A.32π B.2π C.3π D.2.[2019·長沙]一個扇形的半徑為6,圓心角為120°,則該扇形的面積是 ()A.2π B.4π C.12π D.24π3.[2019·遂寧]如圖K27-1,△ABC內(nèi)接于☉O,若∠A=45°,☉O的半徑r=4,則陰影部分的面積為 ()圖K27-1A.4π-8 B.2πC.4π D.8π-84.[2019·南充]如圖K27-2,在半徑為6的☉O中,點A,B,C都在☉O上,四邊形OABC是平行四邊形,則圖中陰影部分的面積為 ()圖K27-2A.6π B.33π C.23π D.2π5.[2019·宿遷]一個圓錐的主視圖如圖K27-3所示,根據(jù)圖中數(shù)據(jù),計算這個圓錐的側(cè)面積是 ()圖K27-3A.20π B.15π C.12π D.9π6.[2019·泰安]如圖K27-4,將☉O沿弦AB折疊,AB恰好經(jīng)過圓心O.若☉O的半徑為3,則AB的長為 ()圖K27-4A.12π B.πC.2π D.3π7.如圖K27-5,在△ABC中,AB=AC,∠ABC=45°,以AB為直徑的☉O交BC于點D.若BC=42,則圖中陰影部分的面積為 ()圖K27-5A.π+1 B.π+2 C.2π+2 D.4π+18.[2018·德州]如圖K27-6,從一塊直徑為2m的圓形鐵皮上剪出一個圓心角為90°的扇形,則此扇形的面積為 ()圖K27-6A.π2m2 B.32C.πm2 D.2πm29.同一個圓的內(nèi)接正方形和正三角形的邊心距的比為.
10.[2017·棗莊]如圖K27-7,在平行四邊形ABCD中,AB為☉O的直徑,☉O與DC相切于點E,與AD相交于點F.已知AB=12,∠C=60°,則弧FE的長為.
圖K27-711.[2019·郴州]如圖K27-8,已知AB是☉O的直徑,CD與☉O相切于點D,且AD∥OC.(1)求證:BC是☉O的切線;(2)延長CO交☉O于點E.若∠CEB=30°,☉O的半徑為2,求BD的長.(結(jié)果保留π)圖K27-812.[2017·濰坊]如圖K27-9,AB為半圓O的直徑,AC是☉O的一條弦,D為BC的中點,作DE⊥AC,交AB的延長線于點F,連接DA.(1)求證:EF為半圓O的切線;(2)若DA=DF=63,求陰影區(qū)域的面積.(結(jié)果保留根號和π)圖K27-9|能力提升|13.[2019·雅安]如圖K27-10,已知☉O的內(nèi)接正六邊形ABCDEF的邊心距OM=2,則該圓的內(nèi)接正三角形ACE的面積為 ()圖K27-10A.2 B.4 C.63 D.4314.如圖K27-11,四邊形ABCD為☉O的內(nèi)接四邊形,☉O的半徑為3,AO⊥BC,垂足為點E,若∠ADC=130°,則BC的長等于 ()圖K27-11A.56π B.4C.53π D.815.[2019·煙臺]如圖K27-12,分別以邊長為2的等邊三角形ABC的三個頂點為圓心,以邊長為半徑作弧,三段弧所圍成的圖形是一個曲邊三角形.已知☉O是△ABC的內(nèi)切圓,則陰影部分的面積為.
圖K27-1216.[2019·揚州]如圖K27-13,將四邊形ABCD繞頂點A順時針旋轉(zhuǎn)45°至四邊形AB'C'D'的位置,若AB=16cm,則圖中陰影部分的面積為cm2.
圖K27-13|思維拓展|17.[2017·達州]如圖K27-14,將矩形ABCD繞其右下角的頂點按順時針方向旋轉(zhuǎn)至圖①位置,繼續(xù)繞右下角的頂點按順時針方向旋轉(zhuǎn)至圖②位置,以此類推,這樣連續(xù)旋轉(zhuǎn)2017次.若AB=4,AD=3,則頂點A在整個旋轉(zhuǎn)過程中所經(jīng)過的路徑總長為 ()圖K27-14A.2017π B.2034πC.3024π D.3026π18.如圖K27-15,將半徑為3的圓形紙片,按下列順序折疊,若AB和BC都經(jīng)過圓心O,則陰影部分的面積是(結(jié)果保留π).
圖K27-15
【參考答案】1.C2.C3.A[解析]由題意可知∠BOC=2∠A=45°×2=90°,S陰=S扇-S△OBC,S扇=14S圓=14×π×42=4π,S△OBC=12所以陰影部分的面積為4π-8,故選A.4.A[解析]連接OB,∵四邊形OABC是平行四邊形,∴AB=OC,∴AB=OA=OB,∴△AOB是等邊三角形,∴∠AOB=60°,∵OC∥AB,∴S△AOB=S△ABC,∴圖中陰影部分的面積=S扇形AOB=60·故選:A.5.B[解析]由勾股定理可得:底面圓的半徑=52-42=3,則底面周長=6π,由圖得,母線長=5,側(cè)面面積=16.C[解析]連接OA,OB,過點O作OD⊥AB于D,交AB于點E,由題可知OD=DE=12OE=12在Rt△AOD中,sinA=ODOA∴∠A=30°,∴∠AOD=60°,∠AOB=120°,∴AB的長=nπr7.B[解析]連接AD,OD.∵AB是☉O的直徑,∴∠ADB=90°.又∵AB=AC,∴BD=CD=12BC=22.在Rt△ADB中,∵∠ABC=45°,∴∠BAD=45°.∴AD=BD=22.∴AB=4.又AO=BO,∴DO⊥AB,BO=AO=OD=2.∴S△BDO=12BO·DO=12×2×2=2,S扇形AOD=90π×22360=π8.A[解析]如圖,連接AC.因為∠ABC=90°,所以AC為☉O的直徑.所以AC=2.所以AB=22AC=2所以扇形的面積為90π×(2)2360=9.2∶1[解析]設(shè)☉O的半徑為R,☉O的內(nèi)接正方形ABCD,如圖,過O作OQ⊥BC于Q,連接OB,OC,即OQ為正方形ABCD的邊心距.∵四邊形ABCD是正方形,☉O是正方形ABCD的外接圓,∴O為正方形ABCD的中心,∴∠BOC=90°,∵OQ⊥BC,OB=CO,∴QC=BQ,∠COQ=∠BOQ=45°,∴OQ=OC×cos45°=22R設(shè)☉O的內(nèi)接正三角形EFG,如圖,過O作OH⊥FG于H,連接OG,即OH為正三角形EFG的邊心距,∵☉O是正三角形EFG的外接圓,∴∠OGF=12∠EGF∴OH=OG×sin30°=12R∴OQ∶OH=22R∶12R=2∶1.10.π[解析]如圖,連接OE,OF.∵CD是☉O的切線,∴OE⊥CD.∴∠OED=90°,∵四邊形ABCD是平行四邊形,∠C=60°,∴∠A=∠C=60°,∠D=120°.∵OA=OF,∴∠A=∠OFA=60°.∴∠DFO=120°.∴∠EOF=360°-∠D-∠DFO-∠DEO=30°,∴EF的長=30π×6180=π11.解:(1)證明:連接OD,如圖所示.∵AD∥OC,∴∠COD=∠ADO,∠COB=∠DAO,∵OA=OD,∴∠ADO=∠DAO,∴∠COD=∠COB.在△COD和△COB中,OD∴△COD≌△COB,∴∠CDO=∠CBO,又CD與☉O相切于點D,∴∠CDO=90°,∴∠CBO=90°,∴BC是☉O的切線.(2)∵∠CEB=30°,∴∠COB=60°,由(1)知,∠COD=∠COB,∴∠COD=60°,∴∠DOB=∠COD+∠COB=120°.∵☉O的半徑為2,∴BD的長=120×π×2180=12.解:(1)證明:如圖,連接OD.∵D為BC的中點,∴∠CAD=∠BAD.∵OA=OD,∴∠BAD=∠ADO.∴∠CAD=∠ADO.∴OD∥AE.∵DE⊥AC,∴OD⊥EF.∴EF為半圓O的切線.(2)如圖,連接OC,CD.∵DA=DF,∴∠BAD=∠F.∴∠BAD=∠F=∠CAD.又∵∠BAD+∠CAD+∠F=90°,∴∠F=30°,∠BAC=60°.∵OC=OA,∴△AOC為等邊三角形.∴∠AOC=60°,∠COB=120°.∵OD⊥EF,∠F=30°,∴∠DOF=60°.在Rt△ODF中,DF=63,∴OD=DF·tan30°=6.在Rt△AED中,DA=63,∠EAD=30°,∴DE=DA·sin30°=33,EA=DA·cos30°=9.∵∠COD=180°―∠AOC―∠DOF=60°,OC=OD,∴∠OCD=∠AOC=60°.∴CD∥AB.故S△ACD=S△COD.∴S陰影=S△AED-S扇形COD=12×9×33-60360×π×6213.D14.D[解析]如圖,連接OB,OC,因為四邊形ABCD為☉O的內(nèi)接四邊形,所以∠ABE=180°-∠ADC=50°,因為AO⊥BC,所以EB=EC,∠AEB=90°,所以∠BAE=90°-∠ABE=40°,所以∠BOE=80°,因為OB=OC,EB=EC,所以∠BOC=2∠BOE=160°,所以BC的長等于160π×3180=15.5π3-23[解析]S△ABC=34×22=3,S扇形ABC=△ABC的內(nèi)切圓半徑為S△ABC12×(2+2+2)=33,S所以陰影部分的面積為3(S扇形ABC-S△ABC)+(S△ABC-S△ABC的內(nèi)切圓)=5π3-2316.32π[解析]由旋轉(zhuǎn)的性質(zhì)得:∠BAB'=45°,四邊形AB'C'D'≌四邊形ABCD,則圖中陰影部分的面積=四邊形ABCD的面積+扇形ABB'的面積-四邊形AB'C'D'的面積=扇形ABB'的面積=45π×162故答案為:32π.17.D[解析]轉(zhuǎn)動第一次A經(jīng)過的路徑長是90π×4180轉(zhuǎn)動第二次A經(jīng)過的路徑長是90π×5180轉(zhuǎn)動第三次A經(jīng)過的路徑長是90π×3180轉(zhuǎn)動第四次A經(jīng)過的路徑長是0,轉(zhuǎn)動第五次A經(jīng)過的路徑長是90π×4180以此類推,每四次為一個循環(huán),故頂點A連續(xù)轉(zhuǎn)動四次經(jīng)過的路徑長為2π+52π+32∵2
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2026年光建一體化科技公司質(zhì)量審核管理制度
- 2026春貴州貴陽市觀山湖區(qū)第七中學(xué)招臨聘教師6人備考題庫附參考答案詳解(滿分必刷)
- 2025年民俗文化試題及答案
- 2025年村官考試《人文科技常識》題庫帶解析完整答案
- (2025年)二級注冊計量師(計量法律法規(guī)及綜合知識)真題附答案
- 2025年高頻碼頭起重操作員面試題及答案
- 2026江蘇南京大學(xué)化學(xué)學(xué)院助理招聘備考題庫附答案詳解(綜合題)
- (2025年)護士資格《兒科護理學(xué)》練習(xí)題附答案
- 2026江蘇南京大學(xué)化學(xué)學(xué)院博士后招聘備考題庫及答案詳解(奪冠)
- 2026年叉車安全使用測試題庫及參考答案1套
- VTE患者并發(fā)癥預(yù)防與處理
- 車輛救援合同協(xié)議書
- 貴州省遵義市匯川區(qū)2024-2025學(xué)年八年級上學(xué)期12月期末數(shù)學(xué)試題
- UWB定位是什么協(xié)議書
- 第三終端藥品銷售技巧
- 甲乳外科進修匯報
- 建設(shè)銣鹽銫鹽及其副產(chǎn)品加工項目可行性研究報告模板-立項備案
- 設(shè)備雙主人管理辦法
- GJB5714A-2023外購產(chǎn)品質(zhì)量監(jiān)督要求
- 2025版跨境電商代銷合作合同范本
- 2024年麻醉指南專家共識
評論
0/150
提交評論